DOI QR코드

DOI QR Code

선박용 디젤엔진의 배기가스 열회수 시스템 (I) - R245fa 및 Water 의 작동유체에 대한 에너지효율 비교 -

Exhaust-Gas Heat-Recovery System of Marine Diesel Engine (I) - Energy Efficiency Comparison for Working Fluids of R245fa and Water -

  • 최병철 ((사)한국선급 환경플랜트팀) ;
  • 김영민 (한국기계연구원 그린동력연구실)
  • Choi, Byung-Chul (Environment & Plant Team, Korean Register of Shipping) ;
  • Kim, Young-Min (Dept. of Engine Research, Korea Institute of Machinery & Materials)
  • 투고 : 2011.09.20
  • 심사 : 2011.12.26
  • 발행 : 2012.03.01

초록

대형 선박의 추진용 디젤엔진에서 버려지는 배기가스의 열을 회수하기 위한 랭킨사이클이 적용된 발전시스템에 대하여 R245fa 및 water 의 작동유체들에 따른 열역학적 효율 특성을 분석하였다. 그 이론적인 계산 결과로, 고정된 질량유량의 R245fa 에 대하여 터빈입구의 압력이 증가할수록 사이클, 시스템, 및 전체적 효율이 증가하였고, 사이클에 의해 발생되는 순동력도 증가하는 특성을 보였다. 반면, water 의 경우에는 R245fa 에 비하여 더 낮은 질량유량 및 터빈입구 압력의 비율에서 최대의 시스템 효율을 보였다. 또한 water 에 대하여 최적화된 사이클의 순출력, 시스템 효율, 및 전체적 효율의 값들은 R245fa 의 경우보다 더 크게 나타났다.

The thermodynamic efficiency characteristics of R245fa and water as working fluids have been analyzed for the electricity generation system applying the Rankine cycle to recover the waste heat of the exhaust gas from a diesel engine for the propulsion of a large ship. The theoretical calculation results showed that the cycle, system, and total efficiencies were improved as the turbine inlet pressure was increased for R245fa at a fixed mass flow rate. In addition, the net work rate generated by the Rankine cycle was elevated with increasing turbine inlet pressure. In the case of water, however, the maximum system efficiencies were demonstrated at relatively small ratios of mass flow rate and turbine inlet pressure, respectively, compared to those of R245fa. The optimized values of the net power of the cycle, system efficiency, and total efficiency for water had relatively large values compared to those of R245fa.

키워드

참고문헌

  1. Buhaug, O., Corbett, J.J., Endresen, O., Eyring, V., Faber, J., Hanayama, S., Lee, D.S., Lee, D., Lindstad, H., Markowska, A.Z., Mjelde, A., Nelissen, D., Nilsen,J., Palsson, C., Winebrake, J.J., Wu, W. and Yoshida, K., 2009, Second IMO GHG Study 2009, International Maritime Organization(IMO) London, UK.
  2. IMO, 2011, Chapter 4 Regulations on Energy Efficiency for Ships, MEPC 62/WP. 11/Add. 1/Rev. 1.
  3. Vaja, I. and Gambarotta, A., 2010, "Internal Combustion Engine Bottoming with Organic Rankine Cycles," Energy, Vol. 35, pp. 1084-1093. https://doi.org/10.1016/j.energy.2009.06.001
  4. Bombarda, P., Invernizzi, C.M. and Pietra, 2010, "Heat Recovery from Diesel Engines: A Thermodynamic Comparison between Kalina and ORC Cycles," Applied Thermal Engineering, Vol. 30, pp. 212-219. https://doi.org/10.1016/j.applthermaleng.2009.08.006
  5. Teng, H., Regner, G. and Cowland, C., "Achieving High Engine Efficiency for Heavy-Duty Diesel Engines by Waste Heat Recovery Using Supercritical Organic-Fluid Rankine Cycle," SAE2006-01-3522.
  6. Teng, H. and Regner, G., "Improving Fuel Economy for HD Diesel Engines with WHR Rankine Cycle Driven by EGR Cooler Heat Regection," SAE2009-01-2913.
  7. Hundy, G.F., Trott, A.R. and Welch, T.C., 2008, Refrigeration and Air Conditioning 4th Ed., Butterworth- Heinemann, pp. 30-40.
  8. Papadopoulos, A. I., Stijepovic, M. and Linke, P., 2010, "On the System Design and Selection of Optimal Working Fluids for Organic Rankine Cycles," Applied Thermal Engineering, Vol. 30, pp. 760-769. https://doi.org/10.1016/j.applthermaleng.2009.12.006
  9. Kondo, S., Urano, Y., Tokuhashi, K., Takahashi, A. and Tanaka, K., 2001, "Prediction of Flammability of Gases by Using F-number Analysis," Journal of Hazardous Materials, Vol. A82, pp. 113-128. https://doi.org/10.1016/S0304-3894(00)00358-7
  10. Chen, H., Goswami, Y. and Stefankos, E.K., 2010, "A Review of Thermodynamic Cycles and Working Fluids for the Conversion of Low-grade Heat," Renewable and Sustainable Energy Reviews, Vol. 14, pp. 3059-3067. https://doi.org/10.1016/j.rser.2010.07.006
  11. Kaminski, D.A. and Jensen, M.K., 2005, Introduction to Thermal and Fluids Engineering, John Wiley & Sons, Inc, pp. 257-665.
  12. Cengel, Y.A. and Boles, M.A., 2006, Thermodynamics: An Engineering Approach, 5th Ed., McGraw-Hill, pp. 279-605.
  13. Incropera, F.P., Dewitt, D.P., Bergman, T.L. and Lavine, A.S., 2007, Fundamentals of Heat and Mass Transfer 6th Ed., John & Wiley & Sons, pp. 669-722.
  14. Hyundai Heavy Industries Co., Ltd., 2011, Technical File for Hyundai-Wartsila 12RT-flex96C-B.
  15. Lemmon, E.W., Huber, M.L. and McLinden, M.O., 2010, REFPROP Ver. 9.0, NIST.
  16. Klein, S.A., Engineering Equation Solver(EES), Prof., Ver. 8.830.
  17. Fischer, J., 2011, "Comparison of Trilateral Cycles and Organic Rankine Cycles," Energy, Vol. 36, pp. 6208-6219. https://doi.org/10.1016/j.energy.2011.07.041

피인용 문헌

  1. Exhaust-Gas Heat-Recovery System of Marine Diesel Engine (II) - Exergy Analysis for Working Fluids of R245fa and Water - vol.36, pp.6, 2012, https://doi.org/10.3795/KSME-B.2012.36.6.593
  2. Thermodynamic Analysis of Trilateral Cycle Applied to Exhaust Gas of Marine Diesel Engine vol.36, pp.9, 2012, https://doi.org/10.3795/KSME-B.2012.36.9.937
  3. Theoretical Study on Fuel Savings of Marine Diesel Engine by Exhaust-Gas Heat-Recovery System of Combined Cycle vol.37, pp.2, 2013, https://doi.org/10.3795/KSME-B.2013.37.2.171
  4. Analysis of organic rankine cycle for designing evaporator of engine exhaust heat recovery system vol.37, pp.5, 2013, https://doi.org/10.5916/jkosme.2013.37.5.446