DOI QR코드

DOI QR Code

다중예각 평면 교차전극을 이용한 입자 크기에 따른 측면방향 변위

Deterministic Lateral Displacement as a Function of Particle Size Using a Piecewise Curved Planar Interdigitated Electrode Array

  • 한송이 (인제대학교 나노공학부) ;
  • 주영돈 (인제대학교 의과대학 혈액종양내과) ;
  • 한기호 (인제대학교 나노공학부)
  • 투고 : 2011.07.25
  • 심사 : 2011.12.28
  • 발행 : 2012.03.01

초록

본 논문에서는 유체흐름방향과 예각으로 놓여있는 평면 교차전극 위를 지나가는 입자의 크기에 따른 측면방향 변위에 대하여 소개한다. 아울러, 유체흐름방향과 평면 교차전극 사이의 각도에 따른 측면방향 변위의 변화를 보인다. 본 논문에서는 선전하(line charge) 모델을 이용하여 크기가 다른 세 종류의 형광 polystyrene(PS) 입자의 측면방향 변위를 이론적으로 예측하였다. 크기에 따른 입자의 측면방향 변위의 변화를 이용하여, 크기별로 입자를 연속적으로 분리할 수 있는 측면방향 유전영동 미세분리기를 개발하였다. 3, 5, 10 ${\mu}m$ PS 입자의 혼합물을 이용하여 분리한 실험결과로 부터 개발된 측면방향 유전영동 미세분리기는 3 ${\mu}m$ PS 입자를 99.86%, 5 ${\mu}m$를 98.82%, 10 ${\mu}m$를 99.69%의 높은 효율로 각각 분리할 수 있음을 확인하였다. 이로부터 제안된 측면방향 유전영동 미세분리기는 다종 혼합물로부터 다양한 크기의 입자들을 한 번에 분리하는 기술로 널리 활용될 수 있을 것으로 기대된다.

This paper presents the lateral displacement of a particle passing over a planar interdigitated electrode array at an angle as a function of particle size. The lateral displacement was also measured as a function of the angle between the electrode and the direction of flow. A simplified line charge model was used for numerical estimation of the lateral displacement of fluorescent polystyrene (PS) beads with three different diameters. Using the lateral displacement as a function of particle size, we developed a lateral dielectrophoretic (DEP) microseparator, which enables the continuous discrimination of particles by size. The experiment using an admixture of 3-, 5-, and $10-{\mu}m$ PS beads showed that the lateral DEP microseparator could continuously separate out 99.86% of the $3-{\mu}m$ beads, 98.82% of the $5-{\mu}m$ beads, and 99.69% of the $10-{\mu}m$ beads. The lateral DEP microseparator is thus a practical device for the simultaneous separation of particles according to size from a heterogeneous admixture.

키워드

참고문헌

  1. Fernandes, P. B., 1998, "Technological Advances in High-Throughput Screening," Current Opinion in Chemical Biology, Vol. 2, No. 5, pp. 597-603. https://doi.org/10.1016/S1367-5931(98)80089-6
  2. Yuen, P. K., Kricka, L. J., Fortina, P., Panaro, N. J., Sakazume, T. and Wilding, P., 2001,"Microchip Module for Blood Sample Preparation and Nucleic acid Amplification Reactions," Genome Research, Vol. 11, pp. 405-412. https://doi.org/10.1101/gr.155301
  3. Mousses, S., Caplen, N. J., Cornelison, R., Weaver, D., Basik, M., Hautaniemi, S., Elkahloun, A. G., Lotufo, R. A., Choudary, A., Dougherty, E. R., Suh, E. and Kallioniemi, O., 2003, "RNAi Microarray Analysis in Cultured Mammalian Cells," Genome Research, Vol. 13, pp. 2341-2347. https://doi.org/10.1101/gr.1478703
  4. Georgiou, G., Stathopoulos, C., Daugherty, P. S., Nayak, A. R., Iverson, B. L. and Curtiss, R., 1997, "Display of Heterologous Proteins on the Surface of Microorganisms: from the Screening of Combinatorial Libraries to Life Recombinant Vaccines," Nature Biotechnology, Vol. 15, pp. 29-34. https://doi.org/10.1038/nbt0197-29
  5. Tixier-Mita, A., Jun, J., Sotrovidov, S., Chiral, M., Frenea, M., Pioufle, B. L. and Fujita, H., 2004, "A Silicon Micro-system for Parallel Gene Transfection into Arrayed Cells," in 8th Internation Conference on Miniaturized Systems for Chemistry and Life Science (MicroTAS'2004), Springer Verlag, Malmo, Sweden, pp. 180-182.
  6. Shizuru, J. A., Negrin, R. S. and Weissman, I. L., 2005, "Hematopoietic Stem and Progenitor Cells: Clinical and Preclinical Regeneration of the Hematolymphoid System," Annual Review of Medicine, Vol. 56, pp. 509-538. https://doi.org/10.1146/annurev.med.54.101601.152334
  7. Liberti, P. A., Rao, C. G. and Terstapen, L. W. M. M., 2001, "Optimization of Ferrofluids and Protocols for the Enrichment of Breast Tumor Cells in Blood," Journal of Magnetism and Magnetic Materials, Vol. 225, No. 1-2, pp. 301-307. https://doi.org/10.1016/S0304-8853(00)01254-3
  8. Jones, T. B., 1995, Electromechanics of Particles, Cambridge University Press, New York, pp. 34-62.
  9. Hu, X. C., Wang Y., Shi, D. R., Loo, T. Y. and Chow, W. C., 2003, "Immunomagentic Tumor Cell Enrichment is Promising in Detecting Circulating Breast Cancer Cells," Laboratory/Clinical Translational Research, Vol. 64, No. 2, pp. 160-165.
  10. Zigeuner, R. E., Riesenberg, R., Pohla, H., Hofstetter, A. and Oberneder, R., 2003, "Isolation of Circulating Cancer Cells fom Whole Blood by Immunocytochemistry in Vitro," The Journal of Urology, Vol. 169, No. 2, pp. 701-705. https://doi.org/10.1016/S0022-5347(05)63996-1
  11. Fu, A. Y., Spence C., Scherer A, Arnold, F. H. and Quake, S. R., 1999, "A Microfabricated Fluorescence- Activated Cell Sorter," Nature Biotechnology, Vol. 17, pp. 1109-1111. https://doi.org/10.1038/15095
  12. Gascoyne, P. R. C., Wang, X.-B., Huang, Y. and Becker, F. F., 1997, "Dielectrophoretic Separation of Cancer Cells from Blood," IEEE Transactions on the Industry Applications, Vol. 33, No. 3, pp. 670-678. https://doi.org/10.1109/28.585856
  13. Huang, Y., Yang, J., Wang, X.-B., Becker, F. F. and Gascoyne, P. R. C., 1999, "Cell Separation on Microfabricated Electrodes Using Dielectrophoretic /Gravitational Field-Flow Fractionation," Analytical Chemistry, Vol. 71, No. 5, pp. 911-918. https://doi.org/10.1021/ac981250p
  14. Markx, G. H. and Pethig, R., 1995, "Dielectrophoretic Separation of Cells: Continuous Separation," Biotechnology and Bioengineering, Vol. 45, No. 4, pp. 337-343. https://doi.org/10.1002/bit.260450408
  15. Doh, I. and Cho, Y.-H., 2005, "A Continuous Cell Separation Chip using Hydrodynamic Dielectrophoresis (DEP) Process," Sensors and Actuators A: Physical, Vol. 121, No. 1, pp. 59-65. https://doi.org/10.1016/j.sna.2005.01.030
  16. Li, Y., Dalton, C., Crabtree, H. J., Nilsson, G. and Kaler, K. V. I. S., 2007, "Continuous Dielectrophoretic Cell Separation Microfluidic Device," Lab on a Chip, Vol. 7, pp. 239-248. https://doi.org/10.1039/b613344d
  17. Choi, S. and Park, J.-K., 2005, "Microfluidic System for Dielectrophoretic Separation Based on a Trapezoidal Electrode Array," Lab on a Chip, Vol. 5, pp. 1161-1167. https://doi.org/10.1039/b505088j
  18. Lin, J. T. Y. and Yeow, J. T. W., 2007, "Enhancing Dielectrophoresis Effect through Novel Electrode Geometry," Biomedical Microdevices, Vol. 9, No. 6, pp. 823-831. https://doi.org/10.1007/s10544-007-9095-x
  19. Kralj, J. G., Lis, M. T. W., Schmidt, M. A. and Jensen, K. F., 2006, "Continuous Dielectrophoretic Size-Based Particle Sorting," Analytical Chemistry, Vol. 78, No. 14, pp. 5019-5025. https://doi.org/10.1021/ac0601314
  20. Cummings, E. B., 2003, "Streaming Dielectrophoresis for Continuous-flow Microfluidic Devices," IEEE Engineering in Medicine and Biology Magazine, Vol. 22, No. 6, pp. 75-84. https://doi.org/10.1109/MEMB.2003.1266050
  21. Dürr, M., Kentsch, J., Müller, T., Schnelle, T. and Stelzle, M., 2003, "Microdevices for Manipulation and Accumulation of Micro- and Nanoparticles by Dielectrophoresis," Electrophoresis, Vol. 24, No. 4, pp. 722-731. https://doi.org/10.1002/elps.200390087
  22. Han, K.-H. and Frazier, A. B., 2008, "Lateral- Driven Continuous Dielectrophoretic Microseparators for Blood Cells Suspended in a Highly Conductive Medium," Lab on a Chip, Vol. 8, No. 7, pp. 1079-1086. https://doi.org/10.1039/b802321b
  23. Gascoyne, P. R. C. and Vykoukal, J. V., 2004, "Dielectrophoresis-Based Sample Handling in General- Purpose Programmable Diagnostic Instruments," Proceedings of the IEEE, Vol. 92, No. 1, pp. 22-42. https://doi.org/10.1109/JPROC.2003.820535
  24. Chan, K. L., Gascoyne, P. R. C., Becker, F. F. and Pethig, R., 1997, "Electrorotation of Liposomes: Verification of Dielectric Multi-shell Model for Cells," Biochimica et Biophysica Acta (BBA)-Lipids and Lipid Metabolism, Vol. 1349, No. 2, pp. 182-196. https://doi.org/10.1016/S0005-2760(97)00092-1

피인용 문헌

  1. Analysis of Particle Motion in Quadrupole Dielectrophoretic Trap with Emphasis on Its Dynamics Properties vol.38, pp.10, 2014, https://doi.org/10.3795/KSME-B.2014.38.10.845