DOI QR코드

DOI QR Code

Agar를 분해하는 swarming 박테리아 균주의 특성과 동정

Characterization and Identification of an Agar-Degrading Motile Bacteria Strain

  • 강성완 (부산대학교 생명과학부 미생물학과) ;
  • 유아영 (부산대학교 생명과학부 미생물학과) ;
  • 유종언 (부산대학교 생명과학부 미생물학과) ;
  • 강호영 (부산대학교 생명과학부 미생물학과)
  • Kang, Sung-Wan (Department of Microbiology, Pusan National University) ;
  • Yoo, Ah-Young (Department of Microbiology, Pusan National University) ;
  • Yu, Jong-Earn (Department of Microbiology, Pusan National University) ;
  • Kang, Ho-Young (Department of Microbiology, Pusan National University)
  • 투고 : 2012.02.10
  • 심사 : 2012.02.22
  • 발행 : 2012.02.28

초록

환경에서 분리된 CK214 균주는 1.5% (w/v) agar가 포함되어 있는 LB 평판배지에서 빠르게 이동하는 특징을 가지며, agar 고체평판배지 위의 CK214 균주의 집락 주위로 움푹한 투명환이 관찰되었다. 이 균주는 단일 탄소원으로 agar만이 첨가된 최소 배지에서 잘 자랐으며, DNS 법을 이용하여 CK214 균주의 외부추출성분이 agar 분해활성을 가진다는 것을 확인하였다. CK214 균주는 다양한 농도의 agar (0.5, 1.0, 1.5 2.0% w/v)가 포함된 고체평판 배지에서 swarming 운동을 하였다. CK214 균주를 동정하기 위해 그람염색과 현미경 관찰, 생화학적 분석(API), 16S rRNA 염기서열분석에 기초한 계통발생학적 분석을 수행하였다. 이를 통해 CK214 균주는 그람 양성의 간균으로, Paenibacillus 속에 포함되었으며 Paenibacillus lactis MB 2035와 가장 가까운 연관성을 보이는 것을 확인할 수 있었다. 또한 CK214 균주는 agar 고체표면에서 주모성의 편모를 형성하는 것을 투과 전자 현미경(TEM)을 통해 관찰하였다. CK214 균주의 agarase 활성과 운동성의 연관성에 관한 앞으로의 연구를 위해 transposon random mutagenesis에 의한 agar 분해활성 결손 돌연변이주를 구축하였다.

A bacterial strain, CK214, exhibiting high motility on an LB agar (1.5%, w/v) surface was isolated from the environment. The formation of unusual agar shrinking around colonies on agar plates was observed. The strain grew on minimal media containing pure agar as a sole carbon source. The cell-free culture supernatant of CK214 generated a reduced form of sugar in the in vitro reaction with the use of pure agar as a substrate, suggesting the secretion of an agar-degrading enzyme. The CK214 strain showed swarming motility on the solid media containing a wide range of concentrations of agar (0.5, 1.0, 1.5, 2.0% w/v). Various tests, including Gram staining, API analysis, and phylogenetic analysis based on 16S rDNA sequences identified that the CK214 strain was a G(+) rod-shaped bacterium grouped in genus Paenibacillus. Electron microscopic analysis demonstrated that the P. CK214 strain is peritrichously flagellated. Through transposon random mutagenesis, several agar-degrading activity defective mutants (ADMs) were generated. These mutants will be used in the future experimentation for the study of the correlation between agar-degrading activity and motility.

키워드

참고문헌

  1. Alavi, M. and R. Belas. 2001. Surface sensing, swarmer cell differentiation, and biofilm development. Methods. Enzymol. 336, 29-40. https://doi.org/10.1016/S0076-6879(01)36575-8
  2. Ash, C., F. G. Priest, and M. D. Collins. 1993. Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus. Antonie Van Leeuwenhoek 64, 253-260. https://doi.org/10.1007/BF00873085
  3. Bertani, G. 1951. Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. J. Bacteriol. 62, 293-300.
  4. Clegg, S. and K. T. Hughes. 2002. FimZ is a molecular link between sticking and swimming in Salmonella enterica serovar Typhimurium. J. Bacteriol.184, 1209-1213. https://doi.org/10.1128/jb.184.4.1209-1213.2002
  5. Cristobal, H. A., M. A. Lopez, E. Kothe, and C. M. Abate. 2011. Diversity of protease-producing marine bacteria from sub-antarctic environments. J. Basic. Microbiol. 51, 590-600. https://doi.org/10.1002/jobm.201000413
  6. Fu, X. T. and S. M. Kim. 2010. Agarase: review of major sources, categories, purification method, enzyme characteristics and applications. Mar. Drugs 8, 200-218. https://doi.org/10.3390/md8010200
  7. Fujihara, M., K. Maeda, E. Sasamori, M. Matsushita, and R. Harasawa. 2009. Effects of chelating reagents on colonial appearance of Paenibacillus alvei isolated from canine oral cavity. J. Vet. Med. Sci. 71, 147-153. https://doi.org/10.1292/jvms.71.147
  8. Ha, J. C., G. T. Kim, S. K. Kim, T. K. Oh, J. H. Yu, and I. S. Kong. 1997. beta-Agarase from Pseudomonas sp. W7: purification of the recombinant enzyme from Escherichia coli and the effects of salt on its activity. Biotechnol. Appl. Biochem. 26, 1-6.
  9. Harshey, R. M. 1994. Bees aren't the only ones: swarming in gram-negative bacteria. Mol. Microbiol. 13, 389-394. https://doi.org/10.1111/j.1365-2958.1994.tb00433.x
  10. Harshey, R. M. 2003. Bacterial motility on a surface: many ways to a common goal. Annu. Rev. Microbiol. 57, 249-273. https://doi.org/10.1146/annurev.micro.57.030502.091014
  11. Harshey, R. M. and T. Matsuyama. 1994. Dimorphic transition in Escherichia coli and Salmonella typhimurium: surface-induced differentiation into hyperflagellate swarmer cells. Proc. Natl. Acad. Sci. 91, 8631-8635. https://doi.org/10.1073/pnas.91.18.8631
  12. Hosoda, A., M. Sakai, and S. Kanazawa. 2003. Isolation and characterization of agar-degrading Paenibacillus spp. associated with the rhizosphere of spinach. Biosci. Biotechnol. Biochem. 67, 1048-1055. https://doi.org/10.1271/bbb.67.1048
  13. Hu, Z., B. K. Lin, Y. Xu, M. Q. Zhong, and G. M. Liu. 2009. Production and purification of agarase from a marine agarolytic bacterium Agarivorans sp. HZ105. J. Appl. Microbiol. 106, 181-190. https://doi.org/10.1111/j.1365-2672.2008.03990.x
  14. Ingham, C. J. and E. Ben Jacob. 2008. Swarming and complex pattern formation in Paenibacillus vortex studied by imaging and tracking cells. BMC Microbiol. 8, 36-42. https://doi.org/10.1186/1471-2180-8-36
  15. Inoue, T., R. Shingaki, and K. Fukui. 2008. Inhibition of swarming motility of Pseudomonas aeruginosa by branched-chain fatty acids. FEMS Microbiol. Lett. 281, 81-86. https://doi.org/10.1111/j.1574-6968.2008.01089.x
  16. Kim, W., T. Killam, V. Sood, and M. G. Surette. 2003. Swarm-cell differentiation in Salmonella enterica serovar typhimurium results in elevated resistance to multiple antibiotics. J. Bacteriol. 185, 3111-3117. https://doi.org/10.1128/JB.185.10.3111-3117.2003
  17. Ko, C. H., C. H. Tsai, P. H. Lin, K. C. Chang, J. Tu, Y. N. Wang, and C. Y. Yang. 2010. Characterization and pulp refining activity of a Paenibacillus campinasensis cellulase expressed in Escherichia coli. Bioresour. Technol. 101, 7882-7888. https://doi.org/10.1016/j.biortech.2010.05.043
  18. Kohler, T., L. K. Curty, F. Barja, C. van Delden, and J. C. Pechere. 2000. Swarming of Pseudomonas aeruginosa is dependent on cell-to-cell signaling and requires flagella and pili. J. Bacteriol. 182, 5990-5996. https://doi.org/10.1128/JB.182.21.5990-5996.2000
  19. Lai, H. C., J. C. Shu, S. Ang, M. J. Lai, B. Fruta, S. Lin, K. T. Lu, and S. W. Ho. 1997. Effect of glucose concentration on swimming motility in enterobacteria. Biochem. Biophys. Res. Commun. 231, 692-695. https://doi.org/10.1006/bbrc.1997.6169
  20. Lu, X., Y. Chu, Q. Wu, Y. Gu, F. Han, and W. Yu. 2009. Cloning, expression and characterization of a new agarase-encoding gene from marine Pseudoalteromonas sp. Biotechnol. Lett. 31, 1565-1570. https://doi.org/10.1007/s10529-009-0042-1
  21. Marinho-Soriano, E. 2001. Agar polysaccharides from Gracilaria species (Rhodophyta, Gracilariaceae). J. Biotechnol. 89, 81-84. https://doi.org/10.1016/S0168-1656(01)00255-3
  22. Matsuo, J., S. Oguri, S. Nakamura, T. Hanawa, T. Fukumoto, Y. Hayashi, K. Kawaguchi, Y. Mizutani, T. Yao, K. Akizawa, H. Suzuki, C. Simizu, K. Matsuno, S. Kamiya, and H. Yamaguchi. 2010. Ciliates rapidly enhance the frequency of conjugation between Escherichia coli strains through bacterial accumulation in vesicles. Res. Microbiol. 161, 711-719. https://doi.org/10.1016/j.resmic.2010.07.004
  23. Nicodeme, M., J. P. Grill, G. Humbert, and J. L. Gaillard. 2005. Extracellular protease activity of different Pseudomonas strains: dependence of proteolytic activity on culture conditions. J. Appl. Microbiol. 99, 641-648. https://doi.org/10.1111/j.1365-2672.2005.02634.x
  24. Rather, P. N. 2005. Swarmer cell differentiation in Proteus mirabilis. Environ. Microbiol. 7, 1065-1073. https://doi.org/10.1111/j.1462-2920.2005.00806.x
  25. Senesi, S., E. Ghelardi, F. Celandroni, S. Salvetti, E. Parisio, and A. Galizzi. 2004. Surface-associated flagellum formation and swarming differentiation in Bacillus subtilis are controlled by the ifm locus. J. Bacteriol. 186, 1158-1164. https://doi.org/10.1128/JB.186.4.1158-1164.2004
  26. Stella, N. A., E. J. Kalivoda, D. M. O'Dee, G. J. Nau, and R. M. Shanks. 2008. Catabolite repression control of flagellum production by Serratia marcescens. Res. Microbiol. 159, 562-568. https://doi.org/10.1016/j.resmic.2008.07.003
  27. Sudo, M., M. Sakka, T. Kimura, K. Ratanakhanokchai, and K. Sakka. 2010. Characterization of Paenibacillus curdlanolyticus intracellular xylanase Xyn10B encoded by the xyn10B gene. Biosci. Biotechnol. Biochem. 74, 2358-2360. https://doi.org/10.1271/bbb.100555
  28. Tcherpakov, M., E. Ben-Jacob, and D. L. Gutnick. 1999. Paenibacillus dendritiformis sp. nov., proposal for a new pattern-forming species and its localization within a phylogenetic cluster. Int. J. Syst Bacteriol. 49, 239-246. https://doi.org/10.1099/00207713-49-1-239
  29. Vorobyeva, N. V., M. Sherman, and A. N. Glagolev. 1982. Bacterial chemotaxis controls the catabolite repression of flagellar biogenesis. FEBS Lett. 143, 233-236. https://doi.org/10.1016/0014-5793(82)80106-3

피인용 문헌

  1. Effect of Glucose on Swarming Motility of Paenibacillus sp. CK214 vol.23, pp.2, 2013, https://doi.org/10.5352/JLS.2013.23.2.299