DOI QR코드

DOI QR Code

Probiotic Potential of Lactobacillus Isolates

Lactobacillus 분리균주의 프로바이오틱스로서의 가능성 검토

  • Bang, Ji-Hun (Department of Biology, Changwon National University) ;
  • Shin, Hwa-Jin (Department of Biology, Changwon National University) ;
  • Choi, Hye-Jung (Department of Biology and Interdisciplinary Program in Biotechnology, Changwon National University) ;
  • Kim, Dong-Wan (Department of Microbiology, Changwon National University) ;
  • Ahn, Cheol-Soo (Cho-A Pharm. Co, LTD.) ;
  • Jeong, Young-Kee (Department of Biotechnology, Dong-A University) ;
  • Joo, Woo-Hong (Department of Biology, Changwon National University)
  • Received : 2012.02.19
  • Accepted : 2012.02.18
  • Published : 2012.02.28

Abstract

The purpose of this study was to investigate the probiotic properties of lactic acid bacterial strains isolated from animal feces. BCNU 9041 and BCNU 9042 isolates were assigned to Lactobacillus brevis on the basis of their physiological properties and 16S ribosomal DNA sequences analysis. They were confirmed as safe bioresources because of their non-hemolytic activities and non-production of harmful ${\beta}$-glucosidase, ${\beta}$-glucuronidase, tryptophanase, or urease. These isolates were also highly resistant to acid (at pH 2.5) and bile acids (at concentration of 0.3%, 0.6%, and 1% oxgall). In addition, they exhibited good antibacterial activity against food-borne bacteria, especially Bacillus cereus, Listeria monocytogenes, and Shigella sonnei. Furthermore, it was demonstrated that they have the highest levels of hydrophobicity and that they showed bile salt hydrolytic and cholesterol assimilation activity. These results suggest that BCNU 9041 and 9042 have good potential for application in functional foods and health-related products.

본 연구는 동물의 분변으로부터 분리한 유산균의 프로바이오틱 특성을 조사할 목적으로 시행되었다. 생리생화학적 특성과 16S 리보솜 DNA 분석 결과 BCNU 9041, 9042는 Lactobacillus brevis와 99%의 상동성을 나타내었다. 이들 균주를 대상으로 기초적인 안전성 실험을 시행한 결과, 이들 균주는 용혈현상이 나타나지 않으며 ${\beta}$-glucosidase, ${\beta}$-glucuronidase, tryptophanase 및 urease와 같은 유해한 생성물을 생성하지 않는 안전한 생물자 원임이 확인되었다. BCNU 9041 및 9042은 pH 2.5의 산성 조건 및 담즙에서(0.3, 0.6, 1%의 oxgall이 포함된 MRS broth) 높은 생존률을 나타내었다. 뿐만 아니라 식중독 원인 세균에 대하여 항균활성을 가지고 있으며, 특히 Bacillus cereus, Listeria monocytogenes 및 Shigella sonnei 에 대한 항균활성이 뛰어났다. 또한 BCNU 9041, BCNU 9042은 92-95%의 높은 소수성과 BSH (bile salt hydrolytic) 활성 및 cholesterol 흡수력이 우수함이 확인되었다. 이들 결과를 바탕으로 프로바이오틱로서의 우수한 기능성을 가진 BCNU 9041와 BCNU 9042의 기능성 식품 및 건강관련 제품으로의 활용이 기대된다.

Keywords

References

  1. Alander, M., Satokari, R., Korpela, R., Saxelin, M., Vilpponen-Salmela, T. and von Wright. A. 1999. Persistence of colonization of human colonic mucosa by a probiotic strain, Lactobacillus rhamnosus GG, after oral consumption. Appl. Environ. Microbiol. 65, 351-354.
  2. Anderson, J. W. and Gilliland, S. E. 1999. Effect of fermented milk (yogurt) containing Lactobacillus acidophilus L1 on serum cholesterol in hypercholesterolemic humans. J. Am. Coll. Nutr. 18, 43-50. https://doi.org/10.1080/07315724.1999.10718826
  3. Axelsson, L. T., Chung, T. C., Dobrogosz, W. G. and Lindgren, S. E. 1989. Production of a broad spectrum antimicrobial substance by Lactobacillus reuteri. Microb. Ecol. Health Dis. 2, 131-136. https://doi.org/10.3109/08910608909140210
  4. Lee, D. Y., Seo, Y. S., Rayamajhi, N., Kang, M. L., Lee, S. I. and Yoo, H. S. 2009. Isolation, characterization, and evaluation of wild isolates of Lactobacillus reuteri from pig feces. J. Microbiol. 47, 663-672. https://doi.org/10.1007/s12275-009-0124-8
  5. Coconnier, M. H., Levien, V., Hemery, E. and Servin, A. L. 1998. Antagonistic activity against Helicobacter infection in vitro and in vivo by the human Lactobacillus acidophilus strain LB. Appl. Environ. Microbiol. 64, 4573-4580.
  6. Doyle, R. J. and Rosenberg, M. 1995. Measurement of microbial adhesion to hydrophobic substrates. Methods Enzymol. 253, 542-550. https://doi.org/10.1016/S0076-6879(95)53046-0
  7. Dunne, C., Murphy, L., Morrissey, D., Thornton, G., O'Halloran, S., Feeney, M., Flynn, S., Fitzgerald, G., Daly, C., Kiely, B., O'Sullivan, G. C., Shanahan, F. and Collins, J. K. 2001. In vitro selection criteria for probiotic bacteria of human origin: correlation with in vivo findings. Am. J. Clin. Nutr. 73, 386S-392S.
  8. Donohue, D. C. and Salminen, S. 1996. Safety of probiotic bacteria. Asia Pac. J. Clin. Nutr. 5, 25-28.
  9. Fukushima, Y., Kawata, Y., Hara, H., Terada, A. and Mitsuoka. T. 1998. Effect of a probiotic formula on intestinal immunoglobulin a production in healthy children. Int. J. Food Microbiol. 30, 39-44.
  10. Fuller, R. and Gibson, G. R. 1997. Modification of the intestinal microflora using probiotics and prebiotics. Scand. J. Gastroenterol. Suppl. 32, 28-31. https://doi.org/10.3109/00365529709025059
  11. Granato, D., Perotti, F., Masserey, I., Rouvet, M., Golliard, M., Servin, A. and Brassart, D. 1999. Cell surface-associated lipoteichoic acid acts as an adhesion factor for attachment of Lactobacillus johnsonii La1 to human enterocyte-like Caco-2 cells. Appl. Environ. Microbiol. 65, 1071-1077.
  12. Gilliland, S. E., Nelson, C. R. and Maxwell, C. 1985. Assimilation of cholesterol by Lactobacillus acidophilus. Appl. Environ. Microbiol. 49, 377-381.
  13. Gilliland, S. E. and Walker, D. K. 1990. Factors to consider when selecting a culture to produce of Lactobacillus acidophilus as a dierary adjunct to produce a hypocholesterolemic effect in humans. J. Dairy Sci. 73, 905-911. https://doi.org/10.3168/jds.S0022-0302(90)78747-4
  14. Henriksson, A., Khaled, A. K. D. and Conway, P. L. 1999. Lactobacillus colonization of the gastrointestinal tract of mice after removal of the non-secreting stomach region. Microb. Ecol. Health Dis. 11, 96-99. https://doi.org/10.1080/089106099435835
  15. Holzapfel, W. H., Geisen, R. and Schillinger, U. 1993. Biological preservation of foods with reference to protective cultures, bacteriocins and food-grade enzymes. Int. J. Food Microbiol. 24, 343-362. https://doi.org/10.1016/0168-1605(94)00036-6
  16. Ishibashi, N. and Yamazaki, S. 2001. Probiotics and safety. Am. J. Clin. Nutr. 73, 465S-470S.
  17. Isolauri, E., Salminen, S. and Ouwehand, A. C. 2004. Microbial-gut interactions in health and disease. Probiotics. Best Prac. Res. Cl. Em. 18, 299-313.
  18. Isolauri, E., Sutas, Y., Kankaanpaa, P., Arvilommi, H. and Salminen, S. 2001. Probiotics: effects on immunity. Am. J. Clin. Nutr. 73, 444S-450S.
  19. Maragkoudakisa, P. A., Zoumpopouloua, G., Miarisa, C., Kalantzopoulosa, G., Potb, B. and Tsakalidou, E. 2006. Probiotic potential of Lactobacillus strains isolated from dairy products. Int. Dairy J. 16, 189-199. https://doi.org/10.1016/j.idairyj.2005.02.009
  20. Cole, C. B., Fuller, R. and Carter, S. M. 1989. Effect of probiotic supplements of Lactobacillus acidophilus and Bifidobacteriurn adolescentis 2204 on ${\beta}$-glucosidase and ${\beta}$-glucuronidase activity in the lower gut of rats associated with a human faecal flora. Microb. Ecol. Health D. 2, 223-225. https://doi.org/10.3109/08910608909140223
  21. Knadler, O. and Weiss, N. 1986. Regular, nonsporing gram-positive rods. pp. 1208-1234. In Sneath, P. H. A., Mair, N. S., Sharpe, M. E. and Holt, J. G. (eds.), Bergey's Manual of Systematic Bacteriology, Vol. 2, Williams & Wilkins, Baltimore.
  22. Mathara, J. M., Schillinger, U., Guigas, C., Franz, C. M. A. P., Kutima, P. M., Mbugua, S., Shin, H. K. and Holzapfel, W. H. 2008. Functional characteristics of Lactobacillus spp. Form traditional Maaasai fermented milk products in Kenya, Int. J. Food Microbiol. 126, 57-64. https://doi.org/10.1016/j.ijfoodmicro.2008.04.027
  23. Mishra, V. and Prasad, D. N. 2005. Application of in vitro methods for selection of Lactobacillus casei strains as potential probiotics. Int. J. Food Microbiol. 103, 109-115. https://doi.org/10.1016/j.ijfoodmicro.2004.10.047
  24. Perez, C., Pauli, M. and Bazerque, P. 1990. An antibiotics assay by agar well diffusion method. ActaBiol. Med. Exp. 15, 113-115.
  25. Perez, P. F., Minnard, Y., Disalvo, E. A. and Antoni, G. L. 1998. Surface properties of bifidobacteria strains of human origin. Appl. Environ. Microbiol. 64, 21-26.
  26. Ramasamy, K., Abdullah, N., Wong M. C., Karuthan, C. and Ho, Y. W. 2010. Bile salt deconjugation and cholesterol removal from media by Lactobacillus strains used as probiotics in chickens. J. Sci. Food Agric. 15, 65-69.
  27. Ross, S. and Jonsson, H. 2002. A high-molecular mass cell surface protein from Lactobacillus reuteri 1063 adheres to mucus components. Microbiology 148, 433-442.
  28. Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406-425.
  29. Schar-Zammaretti, P. and Ubbink, J. 2003. The cell wall of lactic acid bacteria: surface constituents and macromolecular conformations. Biophys. J. 85, 4076-4092. https://doi.org/10.1016/S0006-3495(03)74820-6
  30. Seo J. G., Lee, G. S., Kim, J. E. and Chung, M. J. 2010. Development of probiotic products and challengers. KSBB J. 25, 303-310.
  31. Sorokulova, I. B., Pinchuk, I. V., Denayrolles, M., Osipova, I. G., Huang, J. M., Cutting, S. M. and Urdaci, M. C. 2008. The safety of two Bacillus probiotic strains for Human Use. Digest. Dis. Sci. 53, 954-963. https://doi.org/10.1007/s10620-007-9959-1
  32. Tannock, G. W. 1995. Normal microflora: an introduction to microbes inhabiting the human body. Chapman and Hall London, United Kingdom.
  33. Thirabunyanon, M., Boonprasom, P. and Niamsup, P. 2009. Probiotic potential of lactic acid bacteria isolated from fermented dairy milks on antiproliferation of colon cancer cells. Biotechnol. Lett. 31, 571-576. https://doi.org/10.1007/s10529-008-9902-3
  34. Toit, M., Franz, C. M., Dicks, L. M., Schillinger, U., Haberer, P., Warlies, B., Ahrens, F. and Holzapfel, W. H. 1998. Characterisation and selection of probiotic lactobacilli for a preliminary minipig feeding trial and their effect on serum cholesterol levels, faeces pH and faeces moisture content. Int. J. Food Microbiol. 40, 93-104. https://doi.org/10.1016/S0168-1605(98)00024-5
  35. Vrese, M., Stegelmann, A., Ritcher, B., Fenselau, S., Laue, C. and Schrezenmeir, J. 2001. Probiotics: compensation for lactase insufficiency. Am. J. Clin. Nutr. 73, S421-S429.
  36. Walter, J. 2008. Ecological role of lactobacilli in the gastrointestinal tract: implications for fundamental and biomedical research. Appl. Environ. Microbiol. 74, 4985-4996. https://doi.org/10.1128/AEM.00753-08

Cited by

  1. Quality Characteristics and Antioxidant Activity of Espresso Coffee Prepared with Green Bean Fermented by Lactic Acid Bacteria vol.45, pp.12, 2016, https://doi.org/10.3746/jkfn.2016.45.12.1799
  2. Quality and Sensory Characteristics of Fermented Milk Adding Black Carrot Extracts Fermented with Aspergillus oryzae vol.30, pp.3, 2015, https://doi.org/10.7318/KJFC/2015.30.3.370
  3. Probiotic Potential of Pediococcus pentosaceus BCNU 9070 vol.22, pp.9, 2012, https://doi.org/10.5352/JLS.2012.22.9.1194
  4. Acute Toxicity of Crude Anti-fungal Compounds Produced by Lactobacillus plantarum AF1 vol.42, pp.6, 2013, https://doi.org/10.3746/jkfn.2013.42.6.892
  5. Antioxidative Activity of Mushroom Water Extracts Fermented by Lactic Acid Bacteria vol.43, pp.1, 2014, https://doi.org/10.3746/jkfn.2014.43.1.080
  6. Probiotic Properties of Lactobacillus strains Isolated from Kimchi vol.24, pp.11, 2014, https://doi.org/10.5352/JLS.2014.24.11.1231
  7. Probiotic Effects of Lactobacillus plantarum and Leuconostoc mesenteroides Isolated from Kimchi vol.45, pp.1, 2016, https://doi.org/10.3746/jkfn.2016.45.1.012
  8. Fermentation of Black Garlic Wine and its Characteristics vol.26, pp.7, 2016, https://doi.org/10.5352/JLS.2016.26.7.796
  9. Comparison of quality characteristics of Platycodon grandiflorum according to steaming and fermentation vol.22, pp.6, 2015, https://doi.org/10.11002/kjfp.2015.22.6.851
  10. Probiotic Properties of Lactic Acid Bacteria Isolated from Commercial Raw Makgeolli vol.47, pp.1, 2015, https://doi.org/10.9721/KJFST.2015.47.1.44