DOI QR코드

DOI QR Code

Characteristics of Biosurfactant Produced by Pseudomonas sp. G314

Pseudomonas sp. G314가 생산하는 생물 계면활성제의 특성

  • Shim, So-Hee (Department of Microbiology, College of Medicine, Korea University) ;
  • Park, Kyeong-Ryang (Department of Biotechnology, Hannam University)
  • 심소희 (고려대학교 의과대학 미생물학교실) ;
  • 박경량 (한남대학교 생명공학과)
  • Received : 2011.12.30
  • Accepted : 2012.02.14
  • Published : 2012.02.28

Abstract

The purpose of this paper is to analyze the characteristics and chemical components of biosurfactant produced by Pseudomonas sp. G314. Pseudomonas sp. G314 was isolated from soil samples which were contaminated with oil in Daejon area. As such, it produced quality biosurfactant [23]. One type of biosurfactant was kept in a refrigerator, whereas another type of biosurfactant was kept in room temperature. The surface tension activities were then compared. As a result, the biosurfactant from Pseudomonas sp. G314 that was kept at room temperature was stable for 10 days, showing 26.2 dyne/cm of surface tension activity. This result was found to be similar to that of the refrigerator storage. The surface tension of batch culture was 25 dyne/cm, but the culture in the 5 l fermentor was 27 dyne/cm. Therefore, it can be suggested that the large-scale culture is feasible via the fermentor. Biosurfactant from Pseudomonas sp. G314 was estimated to be a kind of glycolipid because it dissolved in acetone and methanol much better than in benzene and toluene [23]. A spot was detected through the elution of silica gel column and the spread of TLC, and the Rf value was 0.58. This spot has a positive reaction with Bail's reagent and rhodamine 6G. Hence, we can conclude that biosurfactant from Pseudomons sp. G314 was a glycolipid containing carbohydrate and lipid.

대전일원의 유류오염 지역의 토양에서 분리된, 생물 계면활성제 생성능이 우수한 Pseudomonas sp. G314균주 [23]가 생산하는 생물 계면활성제의 특성을 조사하고 그 성분을 확인하였다. Pseudomonas sp. G314가 생산하는 생물 계면활성제는 상온에서 10일 보관 후에도 26.2 dyne/cm 정도의 표면장력을 유지해 냉장 보관한 계면활성제와 비슷하게 안정하였고, 5 l 발효조를 이용한 배양에서 회분배양의 25 dyne/cm 보다는 약간 높은 27 dyne/cm 정도의 계면활성제를 생산해 대량 배양 할 수 있음을 확인하였다. 또 이 계면활성제는 acetone과 methanol에 잘용해 되고 benzene과 toluene에 약하게 용해되어 glycolipid 계열의 생물계면활성제임이 추정되었고[23], 이를 silica gel column을 통해 용출하고, TLC로 전개하여 확인된 Rf 0.58인 spot이 bial's reagent와 rhodamine 6G에서 양성반응을 나타내 Pseudomonas sp. G314가 생산하는 생물 계면활성제는 탄수화물과 지질이 함유된 glycolipid 계열의 생물 계면활성제임을 확인하였다.

Keywords

References

  1. Arima, K., A. Kakiunma, and G. Tamura. 1968. Surfactin a crystaline peptide lipid surfactant produced by Bacillus subtilis : Isolation, characterization and its inhibition of fibirin clot formation. Biochem. Biophys. Res. Commun. 31, 488-494. https://doi.org/10.1016/0006-291X(68)90503-2
  2. Banat, I. M., R. S Makkar, and S. S. Cameotra. 2000. Potential applications of microbial surfactants. Appl. Microbiol. Biotechnol. 53, 495-508. https://doi.org/10.1007/s002530051648
  3. Barathi, S. and N. Vasudevan. 2001. Utilization of petroleum hydrocarbons by Pseudomonas fluorescens isolated from a contaminated soil. Environ. Int. 26, 413-416. https://doi.org/10.1016/S0160-4120(01)00021-6
  4. Cooper, D. G., S. N. Liss, R. Longay, and J. E. Zajic. 1989. Surface activities of Mycobacterium and Pseudomonas. J. Ferment. Technol. 59, 97-101.
  5. Desai, J. D. and I. M. Banat. 1997. Microbial production of surfactants and their commercial potential. Microbiol. Mol. Biol. Rev. 61, 47-64.
  6. Desai, A. J., K. M. Patel, and J. D. Desai. 1988. Emulsifier production by Pseudomonas fluorescens during the growth on hydrocarbons. Curr. Sci. 57, 500-501.
  7. Falatko, D. M. and J. T. Novak. 1992. Effects of biologically produced surfactants on the mobility and biodegradation of petroleum hydrocarbons. Water Environ. Res. 64, 163-169. https://doi.org/10.2175/WER.64.2.10
  8. Fiechter, A. 1992. Biosurfactants : Moving towards industrial application. Biotech. Rev. 10, 208-217. https://doi.org/10.1038/nbt0292-208
  9. Gobbert, U., S. Lang, and F. Wagner. 1984. Sophorose lipid formation by resting cells of Torulopsis bombicola. Biotechnol. Lett. 6. 661-666.
  10. Heinemann, C., V. Hylckama, E. T. van Johan, D. B. Janssen, H. J. Busscher, H. C. van der Mei, and G. Reid. 2000. Purification and characterization of a surface-binding protein from Lactobacillus fermentum RC-14 that inhibits adhesion of Enterococcus faecalis 1131. FEMS Microbiol. Lett. 190, 177-180. https://doi.org/10.1111/j.1574-6968.2000.tb09282.x
  11. Hisatsuka, K., T. Nakahara, Y. Sano, and K. Yamada. 1971. Formation of rhamnolipid by Pseudomonas aeruginosa: its function in hydrocarbon formentations. Agric. Biol. Chem. 35, 686-692. https://doi.org/10.1271/bbb1961.35.686
  12. Inoue, S. 1998. Biosurfactant in cosmetic application. Proceedings of the World Conference on Biotechnology for the Fats and Oils industry. J. Am. Oil Chem. Soc. 65, 206-210.
  13. Javaheri, M., G. E. Jennemar, M. J. Mclnerney, and R. M. Knapp. 1985. Anaerobic production of a biosurfactant by Bacillus licheniformis JF-2. Appl. Environ. Microbiol. Bioeng. 50, 698-700.
  14. Kuiper, I., E. L. Lagendijk, R. Pickford, J. P. Derrick, G. E. Lamers, J. E. Thomas-Oates, B. J. Lugtenberg, and G. V. Bloemberg. 2004. Characterization of two Pseudomonas putida lipopeptide biosurfactants, putisolvin I and II, which inhibit biofilm formation and break down existing biofilms. Mol. Microbiol. 51, 97-113. https://doi.org/10.1046/j.1365-2958.2003.03751.x
  15. Lang, S. 2002. Biological amphiphiles (microbial biosurfactants). Curr. Opin. Colloid. Interf. Sci. 7, 12-20. https://doi.org/10.1016/S1359-0294(02)00007-9
  16. Laycock, M., P. D. Hildebrand, P. Thibault, J. A. Walter, and J. L. C. Wright. 1991. Viscosin, a potent peptidolipid biosurfactant and phytopathogenic mediator produced by a pectolytic strain of Pseudomonas fluorescens. J. Agr. Food Chem. 39, 483-489. https://doi.org/10.1021/jf00003a011
  17. Lee, S. C., Y. J. Jung, J. S. Yoo, Y. S. Cho, I. H. Cha, and Y. L. Choi. 2002. Characteristics of biosurfactants produced by Bacillus sp. LSC11. Korean J. Life Sci. 12, 745-751. https://doi.org/10.5352/JLS.2002.12.6.745
  18. Mulligan, C. N. and B. F. Gibbs. 1993. In Kosaric, N. (ed.), pp. 329-372, Biosurfactants-production, properties, application, M. Dekker, New York.
  19. Neu, T. R. 1996. Significance of bacterial surface active compounds in interaction of bacteria with interfaces. Microbiol. Rev. 60, 151-166.
  20. Noudeh, G. D., M. Housaindokht, and B. S. F. Bazzaz. 2005. Isolation, characterization, and investigation of surface and hemolytic activities of a lipopeptide biosurfactants produced by Bacillus subtilis ATCC 6633. J. Microbiol. 43, 272-276.
  21. Rodrigues, L., I. M. Banat, J. Teixeira, and R. Oliveira. 2006. Biosurfactants: potential applications in medicine. J. Antimicrob. Chemother. 57, 609-618. https://doi.org/10.1093/jac/dkl024
  22. Rosenberg, E., A. Zuckerberg, C. Rubinoritz, and D. L. Gutnick. 1979. Emulsifier of Arthrobacter RAG-1: Isolation and emulsifying properties. Appl. Environ. Microbiol. 37, 402-408.
  23. Shim, S. H. and K. R. Park. 2006. Characteristics of biosurfactant producing Pseudomonas sp. G314. Korean J. Microbiol. 42, 286-293.
  24. Singh, P. and S. S. Cameotra. 2004. Potential applications of microbial surfactants in biomedical sciences. Trends Biotechnol. 22, 142-146. https://doi.org/10.1016/j.tibtech.2004.01.010