DOI QR코드

DOI QR Code

젖산탈수소효소 eye-specific C4 동위효소의 생화학적 특성: 파랑볼우럭(Lepomis macrochirus)과 큰입우럭(Micropterus salmoides)

Biochemical Properties of Lactate Dehydrogenase Eye-Specific C4 Isozyme: Lepomis macrochirus and Micropterus salmoides

  • 염정주 (청주대학교 자연과학부 생명과학) ;
  • 구보라 (청주대학교 자연과학부 생명과학)
  • Yum, Jung-Joo (Department of Life Science, Cheongju University) ;
  • Ku, Bo-Ra (Department of Life Science, Cheongju University)
  • 투고 : 2011.12.06
  • 심사 : 2012.01.16
  • 발행 : 2012.02.28

초록

눈조직의 젖산탈수소효소(LDH, EC 1.1.1.27) eye-specific $C_4$ 동위효소의 특성을 native-PAGE, Western blotting, 면역침강반응 및 효소 역학을 이용하여 연구하였고, LDH eye-specific $C_4$ 동위효소의 활성을 측정하는 조건을 제시하였다. 파랑볼우럭(Lepomis macrochirus)과 큰입우럭(Micropterus salmoides) 눈조직의 세포기질에서 LDH eye-specific $C_4$ 동위효소가 확인되었으며 $B_4$ 동위효소보다 $A_4$ 동위효소에 유사하였다. 파랑볼우럭 눈조직의 LDH/CS는 9월에 증가하여 혐기적 대사가 높게 이루어졌다. 파랑볼우럭과 큰입우럭 눈조직 미토콘드리아 LDH의 전기영동상은 세포기질 LDH와 유사하였다. 눈조직의 LDH eye-specific $C_4$ 동위효소는 Preparative native-PAGE에 의해 정제되었다. 파랑볼우럭과 큰입우럭의 LDH eye-specific $C_4$ 동위효소의 활성은 피루브산 0.2 mM과 0.1 mM 이상의 농도에서 각각 감소되었고, 피루브산 10 mM에서 5.2%, 15.8% 활성이 남아 저해 정도가 크게 나타났다. 그리고 눈조직의 LDH 활성도 젖산 22 mM과 24 mM 이상의 농도에서 각각 감소되어졌다. 파랑 볼우럭 eye-specific $C_4$ 동위효소의 $Km^{PYR}$는 0.088 mM, 큰입우럭 eye-specific $C_4$ $Km^{PYR}$는 0.033 mM였으며, 세포기질과 미토콘드리아 eye-specific $C_4$ 동위효소는 ${\alpha}$-ketobutyric acid에서 활성이 높게 나타났다. 눈조직과 eye-specific $C_4$ 동위효소의 활성은 피루브산 0.5 mM과 Tris-HCl 완충액, pH 7.5에서 측정하는 것이 적합한 것으로 확인되었다. 실험 결과, 큰입우럭 LDH eye-specific $C_4$ 동위효소는 파랑볼우럭 LDH eye-specific $C_4$보다 피루브산에 대한 친화력이 큰 것으로 확인되었고, 더 낮은 피루브산의 농도에서 최대 활성에 이르고, 더 높은 젖산의 농도에서 최대 활성을 나타냈다. 따라서 LDH eye-specific $C_4$ 동위효소에 의해 생성된 에너지가 포식 행동의 초기 반응에 사용되는 것으로 사료된다.

The properties of lactate dehydrogenase (LDH, EC 1.1.1.27) eye-specific $C_4$ isozyme were studied by polyacrylamide gel electrophoresis, Western blotting, immunoprecipitation, and enzyme kinetics. Furthermore, we proposed the optimal conditions for measuring the activity of LDH eye-specific $C_4$ isozyme. The isozymes were detected in the cytosol of eye tissues from Lepomis macrochirus and Micropterus salmoides and were more similar to the $A_4$ than the $B_4$ isozyme. LDH/CS in the eye tissue of L. macrochirus was increased in September, so the ratio of anaerobic metabolism was high. The electrophoretic patterns of mitochondrial LDH were similar to those of cytosolic LDH in the eye tissues of L. macrochirus and Micropterus salmoides. LDH eye-specific $C_4$ isozyme from eye tissue was purified by preparative native-PAGE. The activities of LDH eye-specific $C_4$ isozymes in L. macrochirus and M. salmoides were reduced at concentrations greater than 0.2 mM and 0.1 mM of pyruvate, respectively. These concentrations remained at 5.2% and 15.8% as a result of the inhibition by 10 mM of pyruvate, so the degree of inhibition was very high. The LDH activities of eye tissues were reduced at concentrations greater than 22 mM and 24 mM of lactate, respectively, in L. macrochirus and M. salmoides. The ${K_m}^{PYR}$ of eye-specific $C_4$ was 0.088 mM in L. macrochirus and it was 0.033 mM in M. salmoides. The activities of cytosolic and mitochondrial eye-specific $C_4$ isozymes were high in ${\alpha}$-ketobutyric acid. Furthermore, the activities of eye tissue and eye-specific $C_4$ isozyme had to be measured with 0.5 mM of pyruvate and a buffer solution of pH 7.5. As a conclusion, the eye-specific $C_4$ isozyme in M. salmoides has a high affinity for pyruvate and exhibits maximum activity at a lower concentration of pyruvate and at higher concentration of lactate than that in L. macrochirus. Therefore, it seems that the energy produced by the LDH eye-specific $C_4$ isozyme in M. salmoides was used at the first stage of predatory behavior.

키워드

참고문헌

  1. Ahmad, R. and A. Hasnain. 2005. Ontogenic changes and developmental adjustments in lactate dehydrogenase isozymes of an obligate air-breathing fish Channa punctatus during deprivation of air access. Comp. Biochem. Physiol. 140, 271-278. https://doi.org/10.1016/j.cbpc.2004.10.012
  2. Boussouar, F. and M. Benahmed. 2004. Lactate and energy metabolism in male germ cells. Trends Endocrinol. Metab. 15, 345-350. https://doi.org/10.1016/j.tem.2004.07.003
  3. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein using the principle of protein-dye binding. Anal. Biochem. 72, 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  4. Branco, A., C. Burgos, N. M. Gerez de Burgos, and E. E. Montamat. 1976. Properties of the testicular lactate dehydrogenase isozyme. J. Biochem. 153, 165-172.
  5. Brooks, G. A. 2002. Lactate shuttles in nature. Biochem. Soc. Trans. 30, 258-264. https://doi.org/10.1042/BST0300258
  6. Chippari-Gomes, A. R., L. C. Gomes, N. P. Lopes, A. L. Val and V. M. F. Almeida-Val. 2005. Metabolic adjustments in two Amazonian cichlids exposed to hypoxia and anoxia. Comp. Biochem. Physiol. 141, 347-355. https://doi.org/10.1016/j.cbpc.2005.04.006
  7. Cho, S. K. and J. J. Yum. 1993. Heterogeneity of lactate de hydrogenase isozymes in tissues of Lampetra japonica. Korean J. Zool. 36, 319-328.
  8. Cho, S. K., S. Y. Park, and J. J. Yum. 1993. Purification and immunochemistry of lactate dehydrogenase isozyme in lampretra japonica. Korean J. Zool. 36, 514-521.
  9. Cho, S. K. 2000. Mitochondrial lactate dehydrogenase in tissues of vertebrate. Ph. D. Thesis Cheongju Univ. Korea. pp.88.
  10. Cho, S. K. and J. J. Yum. 2004. Lactate dehydrogenase isozyme of hypoxia tropical catfish (Pangasius polyuranodon, Hypostomus plecostomus). J. Life Sci. 14, 702-707. https://doi.org/10.5352/JLS.2004.14.4.702
  11. Cho, S. K. and J. J. Yum. 2005. Changes of activities and isozymes of lactate dehydrogenase in Coreoperca herzi and Pseudogobio esocinus acclimated to rapid increase of dissolved oxygen. J. Ind. Sci. Cheongju Univ. Korea 15, 71-79.
  12. Cho, S. K., B. Ku, H. An, E. M. Park, S. Y. Park, J. B. Kim, and J. J. Yum. 2009. Purification and characterization of lactate dehydrogenase $A_4$ isoenzyme in mandrin fish (Siniperca scherzeri). J. Life Sci. 19, 256-263. https://doi.org/10.5352/JLS.2009.19.2.256
  13. Cho, S. K. and J. J. Yum. 2011. Purification and characterization of eye-specific lactate dehydrogenase $C_4$ Isozyme in Greenling (Hexagrammos otakii). J. Life Sci. 21, 1565-1572. https://doi.org/10.5352/JLS.2011.21.11.1565
  14. Davis, B. J. 1964. Disc electrophoresis-II. Method and application to human serum proteins. Ann. N. Y. Acad. Sci. 121, 404-427. https://doi.org/10.1111/j.1749-6632.1964.tb14213.x
  15. Eggert, M. W., M. E. Byrne, and R. P. Chambers. 2011. Impact of high pyruvate concentration on kinetics of rabbit muscle lactate dehydrogenase. Appl. Biochem. Biotechnol. 165, 676-686. https://doi.org/10.1007/s12010-011-9287-y
  16. Einarsson, J. M., P. Joyce, and Y. W. Kunz. 1995. Kinetics and immunological differences between the retinal specific $C_{4-}$-and $B_{4-}$-lactate dehydrogenase of the cichlid fish Oreochromis mossambicus. Comp. Biochem. Physiol. 112, 595-598.
  17. El-alfy, S. H., M. B. Abdelmordy, and M. S. Salama. 2008. Lactate dehydrogenase isozymes in tilapiine fishes (cichlidae): tissue expression and genetic variability patterns. proceedings of the eighth international symposium on tilapia in aquaculture. October 12-14. Cairo, Egypt.
  18. Grootegoed, J. A., R. Jansen, and H. J. Van der Molen. 1984. The role of glucose, pyruvate and lactate in ATP production by rat spermatocytes and spermatids. Biochim. Biophys. Acta. 767, 248-256. https://doi.org/10.1016/0005-2728(84)90194-4
  19. Henry, T. and A. Ferguson. 1985. Kinetic studies on the lactate dehydrogenase (LDH-5) isozymes of brown trout, Salmo trutta L. Comp. Biochem. Physiol. 82, 95-98.
  20. 0. Kettler, M. K. and G. S. Whitt. 1986. An apparent progressive and recurrent evolutionary restriction in tissue expression of a gene, the lactate dehydrogenase-C gene, within a family of bony fish (Salmoni formes: Umbridae). J. Mol. Evol. 23, 95-107. https://doi.org/10.1007/BF02099903
  21. Leibel, W. S. and K. Peairs. 1990. Molecular homology of coexpressed eye and liver specific lactate dehydrogenase isozymes from the basketmouth cichlid assessed by oxamate-sepharose and blue dextrose-sepharose affinity chromatography. J. Exp. Zool. 253, 107-114. https://doi.org/10.1002/jez.1402530115
  22. Leibel, W. S., K. N. Bass, and J. E. Eshbach. 1991. An immunochemical analysis of the novel liver-restricted LDH activity from cichlid fishes (Cichlidae: Teleostei) confirms its non-orthology with piscine LDH-C. J. Fish Biol. 39, 143-150.
  23. Markert, C. L., J. B. Shaklee, and G. S. Whitt. 1975. Evolution of a gene. Science 189, 102-114. https://doi.org/10.1126/science.1138367
  24. McClelland, G. B., S. Khanna, G. F. Gonzalez, C. E. Butz, and G. A. Brooks. 2003. Peroxisomal membrane monocarboxylate transporters: evidence for a redox shuttle system?. Biochem. Biophys. Resear. Com. 304, 130-135. https://doi.org/10.1016/S0006-291X(03)00550-3
  25. Moon, J. H. 2006. Respiratory metabolism and antioxidant activities of tissues in Boleothalmus. M. S. Thesis Cheongju Univ. Korea. pp.87.
  26. Mukai, C. and M. Okuno. 2004. Glycolisis plays a major role for adenosine triphosphate supplementation in mouse sperm flagellar movement. Biol. Reprod. 71, 540-547. https://doi.org/10.1095/biolreprod.103.026054
  27. Odet, F., C. Duan, W. D. Willis, E. H. Goulding, A. Kung, E. M. Eddy, and E. Goldberg. 2008. Expression of the gene for mouse lactate dehydrogenase C (Ldhc) is required for male fertility. Biol. Reprod. 85, 556-564. https://doi.org/10.1095/biolreprod.111.091546
  28. Park, E. M. and J. J. Yum. 2010. Purification and characterization of lactate dehydrogenase isozymes in Channa argus. J. Life Sci. 20, 260-268. https://doi.org/10.5352/JLS.2010.20.2.260
  29. Park, E. M. and J. J. Yum. 2011. Activities of lactate dehydrogenase and ratios of lactate dehydrogenase/citrate synthase in tissue of Odontobutis interrupta. J. Ind. Sci. Cheongju Univ. Korea 28, 15-24.
  30. Park, S. Y. and J. J. Yum. 1997. Purification and characterization of lactate dehydrogenase eye-and testis-specific $C_4$ Isozyme. J. Ind. Sci. Cheongju Univ. Korea 15, 263-270.
  31. Park, S. Y. and J. J. Yum. 1993. Lactate dehydrogenase isoenzymes of cypriniform and perciform fishes: expression of the Ldh-C gene. J. Ind. Sci. Cheongju Univ. Korea 11, 265-277.
  32. Place, A. R. and D. A. Powers. 1984. Kinetic characterization of the lactate dehydrogenase (LDH-$B_4$) allozymes of Fundulus heteroclitus. J. Biol. Chem. 259, 1309-1318.
  33. Quattro, J. M., H. A. Woods, and D. A. Powers. 1993. Sequence analysis of teleost retina-specific lactate dehydrogenase C: evolutionary implications for the vertebrate lactate dehydrogenase gene family. Proc. Natl. Acad. Sci. USA 90, 242-246. https://doi.org/10.1073/pnas.90.1.242
  34. Rehse, P. H. and W. S. Davidson. 1986. Evolutionary relationship of a fish C type lactate dehydrogenase to other vertebrate lactate dehydrogenase isozymes. Can. J. Fish. Aqua. Sci. 43, 1045-1051. https://doi.org/10.1139/f86-130
  35. Savino, J. F. and R. A. Stein. 1982. Predator-prey interactions between largemouth bass and bluegill as influenced by simulated, submerged vegetation. Trans. Amer. Fish. Soc. 111, 255-266. https://doi.org/10.1577/1548-8659(1982)111<255:PIBLBA>2.0.CO;2
  36. Savino, J. F. and R. A. Stein. 1989a. Behavioural interactions between fish predators and their prey: effects of plant density. Anim. Behav. 37, 311-321. https://doi.org/10.1016/0003-3472(89)90120-6
  37. Savino, J. F. and R. A. Stein. 1989b. Behavior of fish predators and their prey: habitat. Env. Biol. Fish 24, 287-293. https://doi.org/10.1007/BF00001402
  38. Selch, T. M. and S. R. Chipps. 2007. The cost of capturing prey: measuring largemouth bass (Micropterus salmoides) for aging activity using glycolytic enzymes (lactate dehydrogenase). Can. J. Fish. Aquat. Sci. 64, 1761-1769. https://doi.org/10.1139/f07-133
  39. Sherwood, G. D., I. Pazzia, A. Moeser, A. Hontela, and J. B. Rasmussen. 2002. Shifting gears: enzymatic evidence for the energetic advantage of switching diet in wild-living fish. Can. J. Fish Aquat. Sci. 59, 229-241. https://doi.org/10.1139/f02-001
  40. Srere, P. A., H. Brazil, and L. Gonen. 1963. Citrate condencing enzyme of pigeon breast muscle and moth flight muscle. Acta Chem. Scand. 17, S129-134. https://doi.org/10.3891/acta.chem.scand.17s-0129
  41. Tabor, C. W., H. Tabor, and S. M. Rosenthal. 1954. Purification of amine oxidase from beef plasma. J. Biol. Chem. 208, 645-661.
  42. Tylicki, A., D. Masztaleruk, and S. Strumilo. 2006. Differences in some properties of lactate dehydrogenase from muscles of the carp Cyprinus carpio and trout Salmo gairdneri. Comp. Onto. Biochem. 42, 143-147.
  43. Val, A. L. and V. M. F. Almeidal-Val. 1995. Fishes of the amazon and their environments, physiological and biochemical features. Springer Verlag, Heidelberg. 162-167.
  44. Werner, E. E. and G. G. Mittelbach. 1981. Optimal foraging: field tests of diet choice and habitat switching. Am. Zool. 21, 813-829.
  45. Whitt, G. S. 1970. Developmental genetic of the lactate dehydrogenase isozymes of fish. J. Exp. Zool. 175, 1-36. https://doi.org/10.1002/jez.1401750102
  46. Whitt, G. S. and G. M. Booth. 1970. Localization of lactate dehydrogenase activity in the cells of the fish (Xiphophorus helleri) eye. J. Exp. Zool. 174, 215. https://doi.org/10.1002/jez.1401740210
  47. Whitt, G. S., J. B. Shaklee, and C. L. Markert. 1975. Evolution of lactate dehydrogenase isozymes in fishes. In C. L. Markert, ed. Isozymes, genetics and evolution. Academic Press, N.Y. 4, 381-400.
  48. Williams, A. C. and W. C. Ford. 2001. The role of glucose in supporting motility and capacitation in human spermatozoa. J. Androl. 22, 680-695.
  49. Yum, J. J. 2008. Characterization of lactate dehydrogenase in Acanthogobius hasta. J. Life Sci. 18, 264-272. https://doi.org/10.5352/JLS.2008.18.2.264

피인용 문헌

  1. Metabolic Adjustments of Lactate Dehydrogenase Isozymes to the Environmental Temperature in Bluegill (Lepomis macrochirus) vol.26, pp.10, 2016, https://doi.org/10.5352/JLS.2016.26.10.1105
  2. Metabolism of Lactate Dehydrogenase in Tissues from Ldh-C Expressed Fish at Starved State vol.26, pp.2, 2016, https://doi.org/10.5352/JLS.2016.26.2.155