References
- Beaujean, A., R. S. Sangwan, A. Lecardonnel, and B. S. Sangwan-Norreel. 1998. Agrobacterium-mediated transformation of three economically important potato cultivars using sliced internodal explants: an efficient protocol of transformation. J. Exp. Bot. 49, 1589-1595. https://doi.org/10.1093/jexbot/49.326.1589
- Berrocal-Lobo, M., A. Segura, M. Moreno, G. Lopez, F. Garcia-Olmedo, and A. Molina. 2002. Snakin-2, an antimicrobial peptide from potato whose gene is locally induced by wounding and responds to pathogen infection. Plant Physiol. 128, 951-961. https://doi.org/10.1104/pp.010685
- Durrant, W. E., O. Rowland, P. Piedras, K. E. Hammond-Kosack, and J. D. G. Jones. 2000. cDNA-AFLP reveals a striking overlap in race specific resistance and wound response gene expression profiles. Plant Cell 12, 963-977. https://doi.org/10.1105/tpc.12.6.963
- Elphinstone, J. G., C. Allen, P. Proor, and A. C. Hayward. 2005. The current bacterial wilt situation: A global overview. pages 9-28 in Bacterial wilt: The disease and the Ralstonia solanacearum Species complex., eds. American Phytopathology Society, St Paul, MN.
- Geigenberger, P., B. Regierer, A. Nunes-Nesi, A. Leisse, E. Urbanczyk-Wochniak, F. Springer, J. T. van Dongen, J. Kossmann, and A. R. Fernie. 2005. Inhibition of de novo pyrimidine synthesis in growing potato tubers leads to a compensatory stimulation of the pyrimidine salvage pathway and a subsequent increase in biosynthetic performance. Plant Cell 17, 2077-2088. https://doi.org/10.1105/tpc.105.033548
- Ham, Y. I. and M. Kwon. 1998. Distribution of disease and insects in cultivating field of alpine area. Korea Alpine Agric. Exp. Sta. Ann. Rep. 236-252.
- Hondo, D., S. Hase, Y. Kanayama, N. Yoshikawa, S. Takenaka, and H. Takahashi. 2007. The LeATL6-associated ubiquitin/proteasome system may contribute to fungal elicitor-activated defense response via the jasmonic acid-dependent signaling pathway in tomato. Mol. Plant Microbe Interact. 20, 72-81. https://doi.org/10.1094/MPMI-20-0072
- Isabelle, F., C. Cecile, L. Jacques, P. Agus, S. Vongthip, V.Femand, S. Aline, A. Annick, K. Hippolyte, D. Georges, and D. Sihachakr. 2001. Use of Solanum stenotomum for introduction of resistance to bacterial wilt in somatic hybrids of potato. Plant Physiol. Biochem. 39, 899-908. https://doi.org/10.1016/S0981-9428(01)01307-9
- Feng, J., Y. Fenghua, G. Yin, L. Chenggang, X. Jin, Z. Changling, and H. Liyuan. 2003. A novel antimicrobial protein isolated from potato (Solanum tuberosum) shares homology with an acid phosphatase. Biochem. J. 376, 481-487. https://doi.org/10.1042/BJ20030806
- Johnston, S. A., T. P. M. den Nijs, S. J. Peloquin, and R. E. Hanneman Jr. 1980. The significance of genetic balance to endosperm development in interspecific crosses. Theor. Appl. Genet. 57, 5-9. https://doi.org/10.1007/BF00276002
- Kawasaki, T., J. Nam, D. C. Boyes, B. F. Holt, D. A. Hubert, and A. Wiig. 2005. A duplicated pair of Arabidopsis RING-finger E3 ligases contribute to the RPM1-and RPS2-mediated hypersensitive response. Plant J. 44, 258-270. https://doi.org/10.1111/j.1365-313X.2005.02525.x
- Kim, H., J. S. Moon, Y. J. Hong, M. S. Kim, and H. M. Cho. 2005. Bacterial wilt resistance in the progenies of the fusion hybrids between haploid of potato and Solanum commersonii. Amer. J. Potato Res. 82, 129-137. https://doi.org/10.1007/BF02853650
- Li, G. C., L. P. Jin, X. W. Wang, K. Y. Xie, Y. Yang, E. A. G. van der Vossen, S. W. Huang, and D. Y. Qu. 2010. Gene transcription analysis during interaction between potato and Ralstonia solanacearum. Russian J. Plant Physiol. 57, 685-695. https://doi.org/10.1134/S1021443710050122
- Liu, H., H. Zhang, Y. Yang, G. Li, Y. Yang, X. Wang, B. M. Basnayake, D. Li, and F. Song. 2008. Functional analysis reveals pleiotropic effects of rice RING-H2 finger protein gene OsBIRF1 on regulation of growth and defense responses against abiotic and biotic stresses. Plant Mol. Biol. 68, 17-30. https://doi.org/10.1007/s11103-008-9349-x
- Lodge, J. K., W. K. Kaniewski, and N. E. Tumer. 1993. Broad-spectrum virus resistance in transgenic plants expressing pokeweed antiviral protein. Proc. Natl. Acad. Sci. USA 90, 7089-7093. https://doi.org/10.1073/pnas.90.15.7089
- Murashige, T. and F. Skoog. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plantarum 15, 473-497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
- Murata, Y., N. Tamura, K. Nakaho, and T. Mukaihara. 2006. Mutations in the lrpE gene of Ralstonia solanacearum affects Hrp pili production and virulence. Mol. Plant Microbe Interact. 19, 884-895. https://doi.org/10.1094/MPMI-19-0884
- Nicot, N., J. F. Hausman, L. Hoffmann, and D. Evers. 2005. Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. J. Exp. Bot. 56, 2907-2914. https://doi.org/10.1093/jxb/eri285
- Ramonell, K., M. Berrocal-Lobo, S. Koh, J. Wan, H. Edwards, and G. Stacey. 2005. Loss-of-function mutations in chitin responsive genes show increased susceptibility to the powdery mildew pathogen Erysiphe cichoracearum. Plant Physiol. 138, 1027-1036. https://doi.org/10.1104/pp.105.060947
- Salinas-Mondragon, R. E., C. Garciduenas-Pina, and P. Guzman. 1999. Early elicitor induction of a novel multi gene family coding for highly related RING-H2 proteins in Arabidopsis thaliana. Plant Mol. Biol. 40, 579-590. https://doi.org/10.1023/A:1006267201855
- Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual, 2nd eds. Cold Spring Harbor, New York, NY: Cold Spring Harbor Laboratory.
- Saurin, A. J., K. L. B. Borden, M. N. Boddy, and P. S. Freemont. 1996. Does this have a familiar RING? Trends Biochem. Sci. 21, 208-214. https://doi.org/10.1016/0968-0004(96)10036-0
- Serrano, M. and P. Guzman. 2004. Isolation and gene expression analysis of Arabidopsis thaliana mutants with constitutive expression of ATL2, an early elicitor-response RING-H2 zinc-finger gene. Genetics 167, 919-929. https://doi.org/10.1534/genetics.104.028043
- Serrano, M., S. Parra, L. D. Alcaraz, and P. Guzman. 2006. The ATL genefamily from Arabidopsis thaliana and Oryza sativa comprises a large number of putative ubiquitin ligases of the RING-H2 type. J. Mol. Evol. 62, 434-445. https://doi.org/10.1007/s00239-005-0038-y
- Shin, D. J., S. J. Moon, S. Y. Han., B. G. Kim, S. R. Park, S. K. Lee, H. J. Yoon, H. E. Lee, H. B. Kwon, D. Baek, B. Y. Yi, and M. O. Byun. 2011. Expression of StMYB1R-1, a novel potato single MYB-Like domain transcription factor, increases drought tolerance. Plant Physiol. 155, 421-432. https://doi.org/10.1104/pp.110.163634
- Takai, R., K. Hasegawa, H. Kaku, N. Shibuya, and E. Minami. 2001. Isolation and analysis of expression mechanisms of a rice gene, EL5, which shows structural similarity to ATL family from Arabidopsis, in response to N-acetylchitooligo-saccharide elicitor. Plant Sci. 160, 577-583. https://doi.org/10.1016/S0168-9452(00)00390-3
- Takai, R., N. Matsuda, A. Nakano, K. Hasegawa, C. Akimoto, and N. Shibuya. 2002. EL5 a rice N-acetylchitooligosaccharide elicitor-responsive RING-H2 finger protein, is an ubiquitin ligase which functions in vitro in co-operation with an elicitor-responsive ubiquitin-conjugating enzyme, OsUBC5b. Plant J. 30, 447-455. https://doi.org/10.1046/j.1365-313X.2002.01299.x
- Zeng, L. R., M. E. Vega-Sa´nchez, T. Zhu, and G. L. Wang. 2006. Ubiquitination-mediated protein degradation and modification: an emerging theme in plant-microbe interactions. Cell Res. 16, 413-426. https://doi.org/10.1038/sj.cr.7310053