DOI QR코드

DOI QR Code

감자유전자 StACRE의 분리 및 풋마름병 저항성 기능 검정

Isolation of Potato StACRE Gene and Its Function in Resistance against Bacterial Wilt Disease

  • 박상렬 (농촌진흥청 국립농업과학원 농업생명자원부 신작물개발과) ;
  • 차은미 (농촌진흥청 국립농업과학원 농업생명자원부 신작물개발과) ;
  • 김태훈 (농촌진흥청 국립농업과학원 농업생명자원부 신작물개발과) ;
  • 한세연 (농촌진흥청 국립농업과학원 농업생명자원부 신작물개발과) ;
  • 황덕주 (농촌진흥청 국립농업과학원 농업생명자원부 신작물개발과) ;
  • 안일평 (농촌진흥청 국립농업과학원 농업생명자원부 신작물개발과) ;
  • 조광수 (농촌진흥청 국립식량과학원 고령지농업연구센터) ;
  • 배신철 (농촌진흥청 국립농업과학원 농업생명자원부 신작물개발과)
  • Park, Sang-Ryeol (Bio-Crop Development Division, National Academy of Agricultural Science, Rural Development Administration) ;
  • Cha, Eun-Mi (Bio-Crop Development Division, National Academy of Agricultural Science, Rural Development Administration) ;
  • Kim, Tae-Hun (Bio-Crop Development Division, National Academy of Agricultural Science, Rural Development Administration) ;
  • Han, Se-Youn (Bio-Crop Development Division, National Academy of Agricultural Science, Rural Development Administration) ;
  • Hwang, Duk-Ju (Bio-Crop Development Division, National Academy of Agricultural Science, Rural Development Administration) ;
  • Ahn, Il-Pyung (Bio-Crop Development Division, National Academy of Agricultural Science, Rural Development Administration) ;
  • Cho, Kwang-Soo (Highland Agricultural Research Center (HARC), National Institute of Crop Science, Rural Development Administration) ;
  • Bae, Shin-Chul (Bio-Crop Development Division, National Academy of Agricultural Science, Rural Development Administration)
  • 투고 : 2011.11.21
  • 심사 : 2011.12.26
  • 발행 : 2012.02.28

초록

Ralstonia solanacearum (Rs)에 의해 유발되는 풋마름병은 감자 재배 시 발병하는 주요 병 중의 하나이다. 감자에서 풋마름병 저항성관련 유전자를 찾기 위해 기존에 기능이 알려진 다른 가지과 작물의 기능 유사 유전체를 이용하여 StACRE (HM749652) 유전자를 분리하고 염기서열을 분석하였다. 분리한 StACRE의 발현양상을 분석하기 위해 병 저항성 유도 신호전달 물질인 SA와 풋마름병원균 Rs (KACC10722)를 처리한 감자에서 RNA를 추출하여 RT-PCR을 실시한 결과 이 유전자는 SA 처리에 의해 3시간 후부터, Rs에 의해서는 12시간 후부터 발현이 현저하게 증가하였다. 따라서, 감자에서 이 유전자의 생물학적인 기능을 분석하기 위해 Gateway System을 이용하여 과발현용 vector를 만든 후 과발현 형질전환 감자를 제작하고 풋마름병균인 Rs를 접종하여 병 저항성 기능을 검정 한 결과 대조구인 수미 감자에 비해 병 저항성이 증대하였다.

Bacterial wilt (brown rot) caused by Ralstonia solanacearum (Rs) is one of the most devastating bacterial plant diseases in potatoes. To isolate bacterial wilt disease resistance-related genes from the potato, the StACRE (HM749652) gene was isolated and a sequenced search was performed using functional orthologs of Solanaceae from potatoes. StACRE is homologous to the tobacco NtACRE 132 protein and belongs to the ATL family involved in ubiquitination. To analyze the expression pattern of this gene, RT-PCR was performed with potato treated with salicylic acid (SA) and Rs (KACC 10722). StACRE was strongly induced 3 hours after treatment with SA and 12 hours after infection with Rs. To investigate its biological functions in the potato, we constructed a vector for overexpression in the potato by the Gateway system, and then generated transgenic potato plants. The gene expression of transgenic potato was analyzed by northern blot analysis. In the results of disease resistance assay in relation to bacterial wilt, StACRE overexpressed transgenic potato plants were shown to have more resistance than wild-type potato.

키워드

참고문헌

  1. Beaujean, A., R. S. Sangwan, A. Lecardonnel, and B. S. Sangwan-Norreel. 1998. Agrobacterium-mediated transformation of three economically important potato cultivars using sliced internodal explants: an efficient protocol of transformation. J. Exp. Bot. 49, 1589-1595. https://doi.org/10.1093/jexbot/49.326.1589
  2. Berrocal-Lobo, M., A. Segura, M. Moreno, G. Lopez, F. Garcia-Olmedo, and A. Molina. 2002. Snakin-2, an antimicrobial peptide from potato whose gene is locally induced by wounding and responds to pathogen infection. Plant Physiol. 128, 951-961. https://doi.org/10.1104/pp.010685
  3. Durrant, W. E., O. Rowland, P. Piedras, K. E. Hammond-Kosack, and J. D. G. Jones. 2000. cDNA-AFLP reveals a striking overlap in race specific resistance and wound response gene expression profiles. Plant Cell 12, 963-977. https://doi.org/10.1105/tpc.12.6.963
  4. Elphinstone, J. G., C. Allen, P. Proor, and A. C. Hayward. 2005. The current bacterial wilt situation: A global overview. pages 9-28 in Bacterial wilt: The disease and the Ralstonia solanacearum Species complex., eds. American Phytopathology Society, St Paul, MN.
  5. Geigenberger, P., B. Regierer, A. Nunes-Nesi, A. Leisse, E. Urbanczyk-Wochniak, F. Springer, J. T. van Dongen, J. Kossmann, and A. R. Fernie. 2005. Inhibition of de novo pyrimidine synthesis in growing potato tubers leads to a compensatory stimulation of the pyrimidine salvage pathway and a subsequent increase in biosynthetic performance. Plant Cell 17, 2077-2088. https://doi.org/10.1105/tpc.105.033548
  6. Ham, Y. I. and M. Kwon. 1998. Distribution of disease and insects in cultivating field of alpine area. Korea Alpine Agric. Exp. Sta. Ann. Rep. 236-252.
  7. Hondo, D., S. Hase, Y. Kanayama, N. Yoshikawa, S. Takenaka, and H. Takahashi. 2007. The LeATL6-associated ubiquitin/proteasome system may contribute to fungal elicitor-activated defense response via the jasmonic acid-dependent signaling pathway in tomato. Mol. Plant Microbe Interact. 20, 72-81. https://doi.org/10.1094/MPMI-20-0072
  8. Isabelle, F., C. Cecile, L. Jacques, P. Agus, S. Vongthip, V.Femand, S. Aline, A. Annick, K. Hippolyte, D. Georges, and D. Sihachakr. 2001. Use of Solanum stenotomum for introduction of resistance to bacterial wilt in somatic hybrids of potato. Plant Physiol. Biochem. 39, 899-908. https://doi.org/10.1016/S0981-9428(01)01307-9
  9. Feng, J., Y. Fenghua, G. Yin, L. Chenggang, X. Jin, Z. Changling, and H. Liyuan. 2003. A novel antimicrobial protein isolated from potato (Solanum tuberosum) shares homology with an acid phosphatase. Biochem. J. 376, 481-487. https://doi.org/10.1042/BJ20030806
  10. Johnston, S. A., T. P. M. den Nijs, S. J. Peloquin, and R. E. Hanneman Jr. 1980. The significance of genetic balance to endosperm development in interspecific crosses. Theor. Appl. Genet. 57, 5-9. https://doi.org/10.1007/BF00276002
  11. Kawasaki, T., J. Nam, D. C. Boyes, B. F. Holt, D. A. Hubert, and A. Wiig. 2005. A duplicated pair of Arabidopsis RING-finger E3 ligases contribute to the RPM1-and RPS2-mediated hypersensitive response. Plant J. 44, 258-270. https://doi.org/10.1111/j.1365-313X.2005.02525.x
  12. Kim, H., J. S. Moon, Y. J. Hong, M. S. Kim, and H. M. Cho. 2005. Bacterial wilt resistance in the progenies of the fusion hybrids between haploid of potato and Solanum commersonii. Amer. J. Potato Res. 82, 129-137. https://doi.org/10.1007/BF02853650
  13. Li, G. C., L. P. Jin, X. W. Wang, K. Y. Xie, Y. Yang, E. A. G. van der Vossen, S. W. Huang, and D. Y. Qu. 2010. Gene transcription analysis during interaction between potato and Ralstonia solanacearum. Russian J. Plant Physiol. 57, 685-695. https://doi.org/10.1134/S1021443710050122
  14. Liu, H., H. Zhang, Y. Yang, G. Li, Y. Yang, X. Wang, B. M. Basnayake, D. Li, and F. Song. 2008. Functional analysis reveals pleiotropic effects of rice RING-H2 finger protein gene OsBIRF1 on regulation of growth and defense responses against abiotic and biotic stresses. Plant Mol. Biol. 68, 17-30. https://doi.org/10.1007/s11103-008-9349-x
  15. Lodge, J. K., W. K. Kaniewski, and N. E. Tumer. 1993. Broad-spectrum virus resistance in transgenic plants expressing pokeweed antiviral protein. Proc. Natl. Acad. Sci. USA 90, 7089-7093. https://doi.org/10.1073/pnas.90.15.7089
  16. Murashige, T. and F. Skoog. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plantarum 15, 473-497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  17. Murata, Y., N. Tamura, K. Nakaho, and T. Mukaihara. 2006. Mutations in the lrpE gene of Ralstonia solanacearum affects Hrp pili production and virulence. Mol. Plant Microbe Interact. 19, 884-895. https://doi.org/10.1094/MPMI-19-0884
  18. Nicot, N., J. F. Hausman, L. Hoffmann, and D. Evers. 2005. Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. J. Exp. Bot. 56, 2907-2914. https://doi.org/10.1093/jxb/eri285
  19. Ramonell, K., M. Berrocal-Lobo, S. Koh, J. Wan, H. Edwards, and G. Stacey. 2005. Loss-of-function mutations in chitin responsive genes show increased susceptibility to the powdery mildew pathogen Erysiphe cichoracearum. Plant Physiol. 138, 1027-1036. https://doi.org/10.1104/pp.105.060947
  20. Salinas-Mondragon, R. E., C. Garciduenas-Pina, and P. Guzman. 1999. Early elicitor induction of a novel multi gene family coding for highly related RING-H2 proteins in Arabidopsis thaliana. Plant Mol. Biol. 40, 579-590. https://doi.org/10.1023/A:1006267201855
  21. Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual, 2nd eds. Cold Spring Harbor, New York, NY: Cold Spring Harbor Laboratory.
  22. Saurin, A. J., K. L. B. Borden, M. N. Boddy, and P. S. Freemont. 1996. Does this have a familiar RING? Trends Biochem. Sci. 21, 208-214. https://doi.org/10.1016/0968-0004(96)10036-0
  23. Serrano, M. and P. Guzman. 2004. Isolation and gene expression analysis of Arabidopsis thaliana mutants with constitutive expression of ATL2, an early elicitor-response RING-H2 zinc-finger gene. Genetics 167, 919-929. https://doi.org/10.1534/genetics.104.028043
  24. Serrano, M., S. Parra, L. D. Alcaraz, and P. Guzman. 2006. The ATL genefamily from Arabidopsis thaliana and Oryza sativa comprises a large number of putative ubiquitin ligases of the RING-H2 type. J. Mol. Evol. 62, 434-445. https://doi.org/10.1007/s00239-005-0038-y
  25. Shin, D. J., S. J. Moon, S. Y. Han., B. G. Kim, S. R. Park, S. K. Lee, H. J. Yoon, H. E. Lee, H. B. Kwon, D. Baek, B. Y. Yi, and M. O. Byun. 2011. Expression of StMYB1R-1, a novel potato single MYB-Like domain transcription factor, increases drought tolerance. Plant Physiol. 155, 421-432. https://doi.org/10.1104/pp.110.163634
  26. Takai, R., K. Hasegawa, H. Kaku, N. Shibuya, and E. Minami. 2001. Isolation and analysis of expression mechanisms of a rice gene, EL5, which shows structural similarity to ATL family from Arabidopsis, in response to N-acetylchitooligo-saccharide elicitor. Plant Sci. 160, 577-583. https://doi.org/10.1016/S0168-9452(00)00390-3
  27. Takai, R., N. Matsuda, A. Nakano, K. Hasegawa, C. Akimoto, and N. Shibuya. 2002. EL5 a rice N-acetylchitooligosaccharide elicitor-responsive RING-H2 finger protein, is an ubiquitin ligase which functions in vitro in co-operation with an elicitor-responsive ubiquitin-conjugating enzyme, OsUBC5b. Plant J. 30, 447-455. https://doi.org/10.1046/j.1365-313X.2002.01299.x
  28. Zeng, L. R., M. E. Vega-Sa´nchez, T. Zhu, and G. L. Wang. 2006. Ubiquitination-mediated protein degradation and modification: an emerging theme in plant-microbe interactions. Cell Res. 16, 413-426. https://doi.org/10.1038/sj.cr.7310053