DOI QR코드

DOI QR Code

Isolation and Genetic Characterization of Protease-Producing Halophilic Bacteria from Fermenting Anchovy

발효중인 멸치액젓에서 분리한 단백질분해효소 생산 호염성 세균의 유전적 특성

  • Lee, Jin-Ho (Department of Food Science & Biotechnology, Kyungsung University)
  • 이진호 (경성대학교 식품생명공학과)
  • Received : 2011.11.14
  • Accepted : 2011.12.27
  • Published : 2012.02.28

Abstract

Three protease-producing halophilic bacteria were isolated from fermenting anchovy. Isolated FAM 10, FAM 114, and FAM 115 were found to grow optimally at salt concentrations of 2-4%, 10%, and 6%, respectively, and could grow in salinity of up to 18-22%. The salinity conditions for optimum protease production were 6% in FAM 10 and 10% in FAM 114 and FAM 115. The protease activity of FAM 10 was gradually inhibited by the addition of NaCl up to 10%, and was not evident at 14%, whereas FAM 114 and FAM 115 displayed protease activity at 14% NaCl and could not be measured at 18%. These results demonstrated that the three isolated strains belong to protease-producing, moderately halophilic bacteria. Strain FAM 10, FAM 114, and FAM 115 were identified as Salinivibrio sp., Halobacillus sp., and Halobacillus sp. respectively, based on comparative analyses of the 16S rRNA gene and the 16S-23S intergenic space sequence (IGS), biochemical testing, and Gram staining. Salinivibrio sp. FAM 10 had two 16S rDNAs containing different sequences at position 191 and four IGSs that harbored no tRNA gene and tRNA genes for isoleucine, alanine, glutamate, lysine, and/or valine. Halobacillus sp. FAM 114 and FAM 115 had completely identical 16S rRNA gene sequences and showed 99% identity to the sequences of various Halobacillus strains. The three IGSs found in the genome of both strains displayed 99% sequence identity with Halobacillus aidingensis and Halobacillus sp. JM-Hb, and had $IGS^0$ with no tRNA gene and $IGS^{IA}$ with tRNA genes for isoleucine and alanine.

발효가 진행중인 멸치액젓에서 단백질분해효소를 생산하는 3종의 호염성 세균을 분리하였다. 분리된 FAM 10, FAM 114, 그리고 FAM 115는 각각 소금농도가 2~4%, 10%, 6%에서 최적 세포성장이 관찰되었으며, 18~22% 소 금농도까지 생육이 가능했다. 단백질분해효소 생산을 위한 최적 소금농도는 FAM 10은 6%, FAM 114와 FAM 115는 10%로 나타났다. FAM 10의 단백질분해효소 활성은 10%까지 첨가하면 서서히 저하되며, 14% 소금농도에서는 효소활성이 없는 반면, FAM 114와 FAM 115의 경우, 14%까지 효소활성을 나타냈으며 18%에서는 활성을 관찰할 수 없었다. 이러한 결과로부터 분리된 3종의 미생물이 중간 정도의 호염성 세균임을 증명하였다. 16S rRNA 유전자와 16S-23S 유전자 사이 공간(IGS) 서열, 생화학적 실험, 그람염색을 이용하여 비교 분석한 결과, FAM 10, FAM 114, 그리고 FAM 115는 각각 Salinivibrio sp., Halobacillus sp., 그리고 Halobacillus sp.임을 동정하였다. Salinivibrio sp. FAM 10에는 191번째 서열부터 약간 다른 2가지 종류의 16S rDNA와 16S-23S IGS내에 tRNA 유전자가 없는 형태, 이소루이신/알라닌, 글루탐산/라이신/발린을 운반하는 tRNA 유전자들을 함유하는 4가지 종류의 다른 16S-23S IGS가 존재하였다. Hablobacillus sp. FAM 114와 FAM 115는 완전히 동일한 16S rRNA 유전자 서열을 가지고 있었으며, 여러 Halobacillus sp.와 99% 서열동일성을 보여주었다. IGS의 경우, tRNA 유전자가 없는 IGS와 이소루이신/알라닌을 운반하는 tRNA 유전자들을 함유하는 3가지 16S-23S IGS가 존재하였으며, Halobacillus aidingensis와 Halobacillus sp. JM-Hb의 IGS와 99% 서열동일성을 보여주었다.

Keywords

References

  1. Amoozegar, M. A., P. Schumann, M. Hajighasemi, A. Z. Fatemi, and H. R. K. Heidari. 2008. Salinivibrio proteolyticus sp. nov., a moderately halophilic and proteolytic species from a hypersaline lake in Iran. Int. J. Syst. Evol. Microbiol. 58, 1159-1163. https://doi.org/10.1099/ijs.0.65423-0
  2. Bourget, N. L., H. Philippe, I. Mangin, and B. Decaris. 1996. 16S rRNA and 16S to 23S internal transcribed spacer sequence analyses reveal inter-and intraspecific Bifidobacterium phylogeny. Int. J. Syst. Bacteriol. 46, 102-111. https://doi.org/10.1099/00207713-46-1-102
  3. Chaiyanan, S., S. Chaiyanan, T. Maugel, A. Huq, F. T. Robb, and R. R. Colwell. 1999. Polyphasic taxonomy of a novel Halobacillus, Halobacillus thailandensis sp. nov. isolated from fish sauce. Syst. Appl. Microbiol. 22, 360-365. https://doi.org/10.1016/S0723-2020(99)80043-5
  4. Chen, L., G. Wang, T. Bu, Y. Zhang, Y. Wang, M. Liu, and X. Lin. 2010. Phylogenetic analysis and screening of antimicrobial and cytotoxic activities of moderately halophilic bacteria isolated from the Weihai solar saltern. World J. Microbiol. Biotechnol. 26, 879-888. https://doi.org/10.1007/s11274-009-0247-4
  5. Chen, Y. G., Z. X. Liu, Y. Q. Zhang, Y. X. Zhang, S. K. Tang, E. Borrathybay, W. J. Li, and X. L. Cui. 2009. Halobacillus naozhouensis sp. nov., a moderately halophilic bacterium isolated from a sea anemone. Antonie van Leeuwenhoek. 96, 99-107. https://doi.org/10.1007/s10482-009-9340-9
  6. Chung, S. S., Y. U. Shin, H. J. Kim, G. H. Jin, H. M. Rho, and H. H. Lee. 2000. Isolation of high yielding alkaline protease mutants of Vibrio metschnikovii strain RH530 and detergency properties of enzyme. J. Microbiol. Biotechnol. 10, 349-354.
  7. Essghaier, B., M. Bejji, H. Jijakli, A. Boudabous, and N. S. Zouaoui. 2009. High salt-tolerant protease from a potential biocontrol agent Bacillus pumilus M3-16. Ann. Microbiol. 59, 553-558. https://doi.org/10.1007/BF03175145
  8. Gurtle, V. and V. A. Stanisich. 1996. New approaches to typing and identification of bacteria using the 16S-23S rDNA spacer region. Microbiol. 142, 3-16. https://doi.org/10.1099/13500872-142-1-3
  9. Hong, Y., J. H. Kim, B. H. Ahn, and S. K. Cha. 2000. The effects of low temperature storage and aging of Jeot-kal on the microbial counts and microflora. Korean J. Food Sci. Technol. 32, 1341-1349.
  10. Huang, C. Y., J. L. Garcia, B. K. C. Patel, J. L. Cayol, L. Baresi, and R. A. Mah. 2000. Salinivibrio costicola subsp. vallismortis subsp. nov., a halotolerant facultative anaerobe from Death valley, and emended description of Salinivibrio costicola. Int. J. Syst. Evol. Microbiol. 50, 615-622. https://doi.org/10.1099/00207713-50-2-615
  11. Hur, S. H. 1996. Critical review on the microbiological standardization of salt-fermented fish product. J. Korean Soc. Food Sci. Nutr. 25, 885-891.
  12. Kim, M. S., E. J. Park, M. J. Jung, S. W. Roh, and J. W. Bae. 2009. Analysis of prokaryote communities in Korean traditional fermented food, Jeotgal, using culture-dependent method and isolation of a novel strain. Kor. J. Microbiol. 30, 26-31.
  13. Kim, Y. M. 2008. Present status and prospect of fermented seafood industry in Korea. Food Sci. Industry 41, 16-33.
  14. Kumar, S., R. Jansen, F. Sasse, and G. Hofle. 2004. MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform. 5, 150-163. https://doi.org/10.1093/bib/5.2.150
  15. Lim, H. T., S. K. Chung, G. N. Kim, J. U. Ha, and H. D. Paik. 2002. Characterization of protease produced by Bacillus amyloliquefaciens HTP-8 isolated from Korea fermented anchovy sauce. Kor. J. Microbiol. Biotechnol. 30, 26-32.
  16. Lee, S. K. Y., H. Z. Wang, S. H. W. Law, R. S. S. Wu, and R. Y. C. Kong. 2002. Analysis of the 16S-23S rDNA intergenic spacers (IGSs) of marine vibrios for species-specific signature DNA sequences. Mar. Pol. Bul. 44, 412-420. https://doi.org/10.1016/S0025-326X(01)00256-9
  17. Lee, S. M., J. M. Lim, K. H. Kim, S. Y. Cho, K. S. Park, Y. M. Sin, C. Y. Cheung, J. I. Cho, H. J. You, K. H. Kim, D. H. Cho, C. J. Lim, and O. H. Kim. 2008. Microbiological study using monitoring of microorganism in salt-fermented fishery products. J. Fd. Hyg. Safety 23, 198-205.
  18. Martin, J. F., C. Barreiro, E. G. Lavado, and B. M. Barriuso. 2003. Ribosomal RNA and ribosomal proteins in corynebacteria. J. Biotechnol. 104, 41-53. https://doi.org/10.1016/S0168-1656(03)00160-3
  19. Mellado, E., E. R. B. Moore, J. J. Nieto, and A. Ventosa. 1996. Analysis of 16S rRNA gene sqquences of Vibrio costicola strains: description of Salinivibrio costicola gen. nov., comb. nov. Int. J. System Bacteriol. 46, 817-821. https://doi.org/10.1099/00207713-46-3-817
  20. Park, C. K., T. J. Kang, and K. O. Cho. 2002. Studies on the processing of rapid-and low salt-fermented liquefaction of anchovy (I). Korean J. Dietary Culture 17, 197-213.
  21. Saitou, N. and M. Nei. 1987. The neighbor-joining method: a new method for constructing phylogenetic trees. Mol. Biol. Evol. 4, 406-425.
  22. Sambrook, J. and D. W. Russell. 2001. Molecular cloning: a laboratory manual, 3rd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  23. Thompson, J. D., D. G. Higgins, and T. J. Gibson. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673-4680. https://doi.org/10.1093/nar/22.22.4673
  24. Yoon, J. H., S. J. Kang, C. H. Lee, H. W. Oh, and T. K. Oh. 2005. Halobacillus yeomjeoni sp. nov., isolated from a marine solar saltern in Korea. Int. J. Syst. Evol. Microbiol. 55, 2413-2417. https://doi.org/10.1099/ijs.0.63801-0
  25. Yoon, J. H., S. J. Kang, and T. K. Oh. 2008. Halobacillus seohaensis sp. nov., isolated from a marine solar saltern in Korea. Int. J. Syst. Evol. Microbiol. 58, 622-627. https://doi.org/10.1099/ijs.0.65341-0