DOI QR코드

DOI QR Code

Analysis of Foodborne Pathogenic Contamination of Cooked Hams and Sausages in Korean Processing Facilities

가열 햄 및 소시지류 제조공장에서 식중독 세균에 대한 오염 분석

  • Park, Hyun-Jung (Livestock Product Standard, Animal, Plant and Fisheries Quarantine and Inspection Agency) ;
  • Go, Eun-Kyung (Livestock Product Standard, Animal, Plant and Fisheries Quarantine and Inspection Agency) ;
  • Wee, Sung-Hwan (Livestock Product Standard, Animal, Plant and Fisheries Quarantine and Inspection Agency) ;
  • Yoon, Ha-Chung (Veterinary Epidemiology Division, Animal, Plant and Fisheries Quarantine and Inspection Agency) ;
  • Heo, Eun-Jeong (Livestock Product Standard, Animal, Plant and Fisheries Quarantine and Inspection Agency) ;
  • Kim, Young-Jo (Livestock Product Standard, Animal, Plant and Fisheries Quarantine and Inspection Agency) ;
  • Lee, Hee-Soo (Livestock Product Standard, Animal, Plant and Fisheries Quarantine and Inspection Agency) ;
  • Moon, Jin-San (Livestock Product Standard, Animal, Plant and Fisheries Quarantine and Inspection Agency)
  • 박현정 (농림수산검역검사본부 축산물기준과) ;
  • 고은경 (농림수산검역검사본부 축산물기준과) ;
  • 위성환 (농림수산검역검사본부 축산물기준과) ;
  • 윤하정 (농림수산검역검사본부 역학조사과) ;
  • 허은정 (농림수산검역검사본부 축산물기준과) ;
  • 김영조 (농림수산검역검사본부 축산물기준과) ;
  • 이희수 (농림수산검역검사본부 축산물기준과) ;
  • 문진산 (농림수산검역검사본부 축산물기준과)
  • Received : 2011.12.06
  • Accepted : 2012.02.15
  • Published : 2012.02.29

Abstract

This study was carried out to examine foodborne pathogenic contamination from 1,080 samples of cooked hams and sausages at 10 Korean processing facilities in 2010. The samples were collected from the six primary and additional sterilization products in same lot. To detect Salmonella spp., Staphylococcus aureus, Listeria monocytogenes and Clostridium perfringens in those products (n=1,080), the domestic standard method for Processing and Ingredients Specification of Livestock Products was used. As a result, Salmonella spp. was not detected in all 636 ham and 444 sausage samples. However, L. monocytogenes was detected in four (0.6%) ham and eight (1.8%) sausage samples from five manufactures. S. aureus was also only detected in 4 (0.6%) ham samples from two manufacturers, and C. perfringens was detected in 3 (0.5%) ham samples from three manufacturers, the contamination levels of these pathogens were less than 100 CFU/g. In conclusion, the results of this study indicate that the additional sterilization step of processing manufacturers could not assist to control the foodborne pathogenic bacteria.

현재 국내 일부 햄과 소시지류 제조공장에서 식중독 세균에 대한 제어방안으로서 1차 가열살균 이후 제품포장 단계에서 2차 가열살균을 추가적으로 실시하고 있다. 이에 본 연구에서는 2010년 2월부터 11월까지 국내 10개 육가공제조회사에서 햄류 53개 품목과 소시지류 37개 품목의 동일 롯트에서 1차 가열 시료와 2차 가열까지 실시한 시료를 각각 6개씩 채취하여 축산물의 가공기준 및 성분규격에 따라 Salmonella spp., S. aureus, L. monocytogenes 및 C. perfringens 식중독 세균 오염 여부를 조사하였다. 햄과 소시지류 총 1,080건에 대한 검사 결과 S. aureus는 2개 제조회사에서 생산한 햄 4개 시료에서 검출되었으며, 그 중 3건은 1차 가열제품에서 나머지 1건은 2차 가열살균까지 처리한 제품에서 검출되었다. L. monocytogenes는 5개 제조회사에서 햄류 4건, 소시지류 8건을 포함하여 총 12건이 검출되었으며, 그 중 7건은 1차 가열 처리한 제품에서, 나머지 5건은 2차 가열까지 처리한 제품에서 각각 검출되었다. C. perfringens는 3개 제조회사의 햄류 1건과 소시지류 2건에서 검출되었으며, 1차 가열만 한 제품에서 1건, 2차 가열까지 한 제품에서 2건이 각각 검출되었다. 이에 반하여 Salmonella spp.는 한 건도 검출되지 않았다. 1차 가열살균 제품과 1차와 2차 가열살균 과정을 모두 처리했을 때를 비교하면 3가지 식중독 세균의 검출률에 있어서 차이가 없는 것으로 분석되었다(p<0.05). 또한, 제조 회사의 햄과 소시지류에서 분리한 L. monocytogenes 균주를 대상으로 유전적 다양성을 조사하기 위하여 PFGE를 실시한 바, 동일 가공장에서 분리된 균주들간 80% 이상의 높은 상동성을 가진 것으로 조사되었다. 이러한 결과에 비추어 볼 때 햄 및 소시지류 제조회사에서 식중독 세균의 제어를 위해서는 원료 및 제조단계에서부터 가공 과정에서의 교차 오염을 예방하기 위한 적절한 위생관리와 철저한 모니터링을 통하여 체계적인 식중독 세균에 대한 위생관리를 완성하여야 할 것으로 판단된다.

Keywords

References

  1. Algresti, A. (2007) An introduction to categorical data analysis. John Wiley & Sons, Inc., NJ. pp. 6-10.
  2. Animal, Plant and Fisheries Quarantine and Inspection Agency Notification (2011) Standards for Processing and Ingredients Specifications of Livestock Products. pp. 203-213.
  3. Atanassova, V., Meindl, A., and Ring, C. (2001) Prevalence of Staphylococcus aureus and staphylococcal enterotoxins in raw pork and uncooked smoked ham-a comparison of classical culturing detection and RFLP-PCR. Int. J. Food Microbiol. 68, 105-113. https://doi.org/10.1016/S0168-1605(01)00479-2
  4. Beumer, R. R., de Giffel, M. C., Boer, E. and de Rombouts, F. M. (1996) Growth of Listeria monocytogenes on sliced cooked meat products. Food Microbiol. 13, 333-340. https://doi.org/10.1006/fmic.1996.0039
  5. Borch, E. and Arinder, P. (2002) Bacteriological safety issues in red meat and ready-to-eat meat products, as well as control measures. Meat Sci. 62, 381-390. https://doi.org/10.1016/S0309-1740(02)00125-0
  6. Carminati, D., Perrone, A., Giraffa, G., Neviani, E., and Mucchetti, G. (2004) Characterization of Listeria monocytogenes strains isolated from Gorgonzola cheese rinds. Food Microbiol. 21, 801-807 https://doi.org/10.1016/j.fm.2004.01.011
  7. Commission Regulation (2005) No 2073/2005 on microbiological criteria for food stuffs, Official Journal of the European Union 22.12. Available from: http://ec.europa.eu/food/food/biosafety/salmonella/microbio_en.htm Accessed Feb. 9, 2012.
  8. Conly, J. M. and Johnston, B. L. (2008) Listeria: A persistent food-borne pathogen. Can. J. Infect. Dis. Med. 19, 327-328.
  9. de Cesare, A., Mioni, R., and Manfreda, G. (2007) Prevalence of Listeria monocytogenes in fresh and fermented Italian sausages and ribotyping of contaminating strains. Int. J. Food Microbiol. 120, 124-130. https://doi.org/10.1016/j.ijfoodmicro.2007.06.009
  10. Farber, J. M., Peterkin, P. I. (1991) Listeria monocytogenes, a food-borne pathogen. Microbiol. Rev. 55, 476-511.
  11. Food Safety and Inspection Service. (2003) Control of Listeria monocytogenes in ready-to-eat meat and poultry products; final rule, Federal Register 68, 34208-34254.
  12. Food Standards Australia New Zealand. (2001) STANDARD 1.6.1 Microbiological limits for food.
  13. Gandhi, M. and Chikindas, M. L. (2007) Listeria: A foodborne pathogen that knows how to survive. Int. J. Food Microbiol. 113, 1-15. https://doi.org/10.1016/j.ijfoodmicro.2006.07.008
  14. Gormley, F. J., Little C. L., Grant, K. A., de Pinna, E., and McLauchlin, J. (2010) The microbiological safety of readyto- eat specialty meats from markets and specialty food shops: A UK wide study with a focus on Salmonella and Listeria monocytogenes. Food Microbiol. 27, 243-249. https://doi.org/10.1016/j.fm.2009.10.009
  15. Graves, L. M. and Swaminathan, B. (2001) Pulse Net standardized protocol for subtyping Listeria monocytogenes by macrorestriction and pulsed-field gel electrophoresis. Int. J. Food Microbiol. 65, 55-62. https://doi.org/10.1016/S0168-1605(00)00501-8
  16. Hunter, P. R. and Gaston, M. A. (1988) Numerical index of the discriminatory ability of typing systems: an application of simpson's index of diversity. J. Clin. Microbiol. 26, 2465-2466.
  17. Japan Ministry of Health, labour and Welfare. Specifications and Standards for Food, Food Additives, Available from: http://www.mhlw.go.jp/topics/bukyoku/iyaku/syoku-anzen/jigyousya/ shokuhin_kikaku. Accessed Feb. 9, 2012.
  18. Jordan, E., Egan, J., Dullea, C., Ward, J., McGillicuddy, K., Murray, G., and Murphy, A. (2006) Salmonella surveillance in raw and cooked meat and meat products in the Republic of Ireland from 2002 to 2004. Int. J. Food Microbiol. 112, 66-70. https://doi.org/10.1016/j.ijfoodmicro.2006.05.013
  19. Jung, S. H. (2011) Manufacturing technology of ham and sausage. Korea Meat Industries Association. pp.147-197.
  20. Kathariou, S. (2002) Listeria monocytogenes virulence and pathogenicity, a food safety perspective. J. Food Prot. 65, 1811-1829.
  21. Nichols, G. and de Louvois, J. (1995) The microbiological quality of raw sausages sold in the UK. PHLS Microbiol. Digest 12, 236-242.
  22. Noack, D. J. and Joeckel, J. (1993) Listeria monocytogenes, occurrence and significance in meat and meat products and experience with recommendations for its detection and assessment. Fleischwirtschaft 73, 581-584.
  23. Pesavento, G. B., Ducci, D., Nieri, N., Comodo, A., and Nostro, L. (2010) Prevalence and antibiotic susceptibility of Listeria spp. Isolated from raw meat and retail foods. Food Control 21, 708-713. https://doi.org/10.1016/j.foodcont.2009.10.012
  24. Rivoal, K., Queguiner, S., Boscher, E., and Bougeard. S. (2010) Detection of Listeria monocytogenes in raw and pasteurized liquid whole eggs and characterization by PFGE. Int. J. Food Microbiol. 138, 56-62. https://doi.org/10.1016/j.ijfoodmicro.2010.01.013
  25. Ryser, E. T. and Marth, E. H. (2007) Listeria, listeriosis and food safety (3rd ed), CRC Press, Boca Raton, USA.
  26. Sofos, J. N., Skandamis, P., Stopforth J. D., and Bacon, T. (2003) Current issues related to meatborne pathogenic bacteria. Proceedings of the 56th Reciprocal Meat Conference. pp. 33-37.
  27. Thevenot, D., Delignette-Muller M. L., Christieans, S., Leroy, S., Kodjo, A., and Vernozy-Rozand, C. (2006) Serological and molecular ecology of Listeria monocytogenes isolates collected from 13 French pork meat salting-curing plants and their products. Int. J. Food Microbiol. 112, 153-161. https://doi.org/10.1016/j.ijfoodmicro.2006.06.017
  28. Tompkin, R. B. (2002) Control of Listeria monocytogenes in the food-processing environment. J. Food Prot. 65, 709-725.
  29. Uyttendaele, M., Troy, P. De., and Debevere, J. (1999) Incidence of Listeria monocytogenes in different types of meat products on the Belgian retail market. Int. J. Food Microbiol. 53, 75-80. https://doi.org/10.1016/S0168-1605(99)00155-5
  30. Yoo, H. S. (1997) Molecular typing and epidemiological survey of prevalence of Clostridium perfringens types by multiplex PCR. J. Clin. Microbiol. 35, 228-232.

Cited by

  1. Mathematical Model for Predicting the Growth Probability of Staphylococcus aureus in Combinations of NaCl and NaNO2under Aerobic or Evacuated Storage Conditions vol.36, pp.6, 2016, https://doi.org/10.5851/kosfa.2016.36.6.752
  2. Quantitative risk assessments of the effect of an edible defatted soybean meal-based antimicrobial film on the survival of Salmonella on ham vol.158, 2015, https://doi.org/10.1016/j.jfoodeng.2015.03.002
  3. Monitoring of genetically modified soybean events in sausage products in South Korea vol.67, 2016, https://doi.org/10.1016/j.foodcont.2016.02.041
  4. Development of a predictive model for growth of Listeria monocytogenes on cooked sausage in cold storage in the household vol.26, pp.2, 2019, https://doi.org/10.11002/kjfp.2019.26.2.135
  5. Antimicrobial Effects of EcoCal® and GF Bactostop® Formulated in Emulsified Sausages against Lactic Acid Bacteria vol.35, pp.3, 2012, https://doi.org/10.13103/jfhs.2020.35.3.279