DOI QR코드

DOI QR Code

연기 영상의 정적 및 동적 텍스처를 이용한 강인한 연기 검출

Reliable Smoke Detection using Static and Dynamic Textures of Smoke Images

  • 김재민 (홍익대학교 전자전기공학부)
  • 투고 : 2011.12.20
  • 심사 : 2012.02.02
  • 발행 : 2012.02.28

초록

감시 카메라를 이용하여 화재 연기를 자동 검출하는 시스템은 신뢰도 높은 연기 영상의 검출 방법을 필요로 한다. 카메라를 이용하여 공기 중에 확산하는 연기의 영상을 연속적으로 획득하였을 때, 연기 영상의 각 장면은 독특한 텍스처(정적 텍스처)를 가지며, 연기의 확산 운동으로 인하여 그 차분 영상 또한 다른 물체와 구별이 되는 독특한 텍스처(동적 텍스처)를 가진다. 특정 객체가 연기와 유사한 정적 텍스처를 가지고 있을 지라도 그 움직임의 특성이 연기 특유의 확산 운동과 다르다면, 그 차분 영상의 텍스처는 연기의 차분 영상 텍스처와 유사할 수 없다. 본 논문에서는 이 두 가지 정적 및 동적 텍스처를 이용하여 신뢰도 높은 연기 영상 검출 방법을 제안한다. 제안하는 방법은 누적된 장면 차분 영상을 이용하여 변화 영역을 일차적으로 검출하고, 검출된 변화 영역의 정적 및 동적 텍스처로부터 추출한 Haralick 특징 벡터 이용하여 최종적으로 연기로 인한 변화 영역을 검출한다.

Automatic smoke detection systems using a surveillance camera requires a reliable smoke detection method. When an image sequence is captured from smoke spreading over in the air, not only has each smoke image frame a special texture, called static texture, but the difference between two smoke image frames also has a peculiar texture, called dynamic texture. Even though an object has a static texture similar to that of the smoke, its dynamic texture cannot be similar to that of the smoke if its movement differs from the diffraction action of the smoke. This paper presents a reliable smoke detection method using these two textures. The proposed method first detects change regions using accumulated frame difference, and then picks out smoke regions using Haralick features extracted from two textures.

키워드

참고문헌

  1. N. Fujiwara and K. Terada, "Extraction of a smoke region using fractal coding," IEEE International symposium on communication and information technology, Vol.2, pp.659-662, 2004(10).
  2. I. Kopilovic, b. Vagvolgyi, and T. Sziranyi, "Application of panoramic annular lens for motion analysis tasks: surveillance and smoke detection," Proceedings of 15th international conference on pattern recognition, Vol.4, pp.714-717, 2000(9).
  3. J. Vicente and P. Guillemant, "An image processing technique for automatically detecting forest fire," International Journal of Thermal Sciences, Vol.41, No.12, pp.1113-1120, 2002. https://doi.org/10.1016/S1290-0729(02)01397-2
  4. T. T. Truong and J. M. Kim "Early smoke detection system based on motion estimation," IFOST 2010 Proceedings, pp.437-440, 2010(10).
  5. B. U. Toreyin, Y. Dedeoglu, and A. E. Cetin, "Wavelet based real-time smoke detection in video," 13th European Signal Processing Conference EUSIPCO, 2005.
  6. S. Calderara, P. Piccinini, and R. Cucchiara, "Smoke detection in video surveillance: A MoG model in the wavelet domain," ICVS 2008, LNCS 5008, pp.119-128, 2008.
  7. A. Rafiee, and R. Tavakoli, "Fire and Smoke Detection using Wavelet Analysis and Disorder Characteristics," ICCRD, pp.262-265, 2011(3).
  8. H. J. Grech-Cini, "Smoke detection," US Patent No. US6844818B2, 2005(1).
  9. Z. Xiong, R. Caballero, H. Wang, A. M. Finn, M. A. Lelic, and P. Y. Peng, "Video-based smoke detection: possibilities, techniques, and challenges," SUPDET, Orlando, FL 2007.
  10. Shen-Kuen, "Smoke detecting method and device," US Patent No. US7859419B2, 2008(12).
  11. H. Maruta, A. Nakamura, and F. Kurokawa, "A New Approach for Smoke Detection with Texture Analysis and Support Vector Machine," IEEE International Symposium on Industrial Electronics, pp.1550-1555, 2010(7).
  12. R. M. Haralic and K. Shanmugam, "Textural Features for Image Classification," IEEE Transactions on Systems, Man, and Cybernetics Vol.3, No.6, pp.610-621, 1973.
  13. http://www.csie.ntu.edu.tw/-cjlin/libsvm
  14. P. L. Rosin and E. Ioannidis, "Evaluation of global image thresholding for change detection," Pattern Recognition Letters, Vol.24, pp.2345-2356, 2003. https://doi.org/10.1016/S0167-8655(03)00060-6
  15. C. Su and A. Amer, "A real-time adaptive thresholding for video change detection," IEEE International Conference on Image Processing, pp.157-160, 2006(10).
  16. J. M. McHugh and J. Konrad, "Foreground Adaptive Background Subtraction," IEEE Signal Process. Lett, Vol.16, No.5, pp.390-393, 2009. https://doi.org/10.1109/LSP.2009.2016447