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Abstract

In fitting a regression model, we often encounter data sets which do not follow Gaussian distribution and/or

do not have equal variance. In this case estimation of the conditional density of a response variable at a

given design point is hardly solved by a standard least squares method. To solve this problem, we propose

a simple method to estimate the distribution of the fitted vales under heteroscedasticity using the idea of

quantile regression and the histogram techniques. Application of this method to a real data sets is given.
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1. Introduction

Regression analysis is a statistical technique to investigate and model the relationship between vari-

ables. In particular, the aim of regression analysis is to construct mathematical models that describe

or explain relationships that may exist between variables. Applications of regression are numerous

and occur in almost every field such as engineering, the physical and chemical sciences, economics,

management, life and biological sciences, and the social sciences. For this reason, regression analysis

has been one of the most important statistical technique for many decades.

After fitting a regression model, we are interested quite often in estimating the confidence region for

the fitted values at a specific design point. Both in the parametric and the nonparametric regression,

Gaussian assumptions are allowed to the error terms. When the homoscedastistic assumptions on

the variance of the error terms are doubtful, heteroscedastistic assumptions are given in addition

to the Gaussian assumptions. However, it is very hard to reflect the heteroscedastistic assumptions

in evaluating confidence regions for the fitted values. In general, this problem shares the same
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difficulty to estimate the conditional distribution of the response variable given the covariates, and

many studies are done in this area. Among them, Copas (1995), Hjort and Jones (1996), Loader

(1996), Hall and Presnell (1997), and Hall et al. (1999) gave excellent results.

In this article, we propose a simple method to estimate the distribution of the fitted vales under

heteroscedasticity using the idea of quantile regression (Koenker and Bassett, 1978). Quantile

regression is very robust technique in regression and gives many desirable properties when error

terms are far away from the Gaussian assumption. For simplicity, we consider a one-dimensional

covariate case. First, we evaluate quantile regression estimate for various values of quantile, and

using this result we make a smooth version of density using the histogram technique and the spline.

The rest of the paper is organized as follows. In Section 2, we review the quantile regression. In

Section 3 we propose the method to estimate the conditional density function using the quantile

regression estimates, and smoothing technique based on the histogram. In Section 4, three dimen-

sion graphs for the distribution function based on a real data set using R package for visualization

of the conditional distribution function. Concluding remarks are given in Section 5.

2. Quantile Regression

The method of quantile regression estimation, first introduced by Koenker and Bassett (1978), is

contrary to the least squares method estimating conditional expectation, and is concerned about

estimating quantiles instead of mean. Quantile regression can give a more complete assessment of

covariate effects at a properly chosen set of quantiles. See, for example, Koenker and Bassett (1978),

Portnoy and Koenker (1997), Yu et al. (2003), and Koenker (2005), among others. Because of these

theoretical advantages, quantile regression is being used in various fields. Cole and Green (1992)

and Haegerty and Pepe (1999) used quantile regression to create reference charts in the medical

field and Hendricks and Konenker (1992) and Koenker and Hallock (2001) used quantile regression

to build economic models among others.

Consider a simple linear model

yi = β0 + β1xi + ϵi, i = 1, 2, . . . , n,

where yi is a response variable, xi is a covariate, β0 and β1 are unknown regression coefficients,

and ϵi is a identically and independently distributed error with mean 0 and variance σ2. The least

squares estimation(LSE) of β is obtained by minimizing the quadratic loss function r(u) = u2/2,

i.e., given {xi, yi}, the LSE is obtained by minimizing

n∑
i=1

r(yi − β0 − β1xi) =
1

2

n∑
i=1

(yi − β0 − β1xi)2.

Therefore, the LSE is concerned with the estimation of the conditional expectation E(Y |X =

x). However, median quantile regression estimates the conditional median of Y given X = x,

and the corresponding loss function is |u|/2. The resulting estimator is called the least absolute

deviation(LAD) estimator, because it minimizes

n∑
i=1

r(yi − β0 − β1xi) =
1

2

n∑
i=1

|yi − β0 − β1xi|.
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Figure 2.1. Check function (τ = 0.25, 0.5, 0.75)

Note that

ρ0.5(u) = 0.5|u|
= 0.5uI[0,∞)(u)− (1− 0.5)uI(−∞,0)(u),

where I(·) is an indicator function. By replacing 0.5 by τ , 100τ% quantile regression qτ (x) at x can

be defined as the value of θ that minimizes

E[ρτ (Y − θ)|X = x].

Here,

ρτ (u) = τuI[0,∞)(u)− (1− τ)uI(−∞,0)(u)

is called the check function (see Figure 2.1), and it can also be written as ρτ (u) = u(τ − I(u < 0)).

According to Figure 2.1, check function has a weight of τ in the case of a positive value and a weight

of (1− τ) in the case of a negative value. Therefore, the 100× τ% estimate of regression coefficients

in the linear quantile regression at is given by

β̂τ = arg min
β∈Rp

n∑
i=1

ρτ
(
yi − xT

i β
)

and the corresponding fitted value is

ŷτ,i = xT
i β̂τ .

The parametric quantile regression is extended to the nonparametric quantile regression by Yu and

Jones (1998) and Hall et al. (1999). Yu and Jones (1998) used a double-kernel approach and Hall

et al. (1999) proposed an adjusted version of Nadaraya-Watson estimator. In the nonparametric

quantile regression, the bandwidth selection is important. To solve this problem, Yu and Jones

(1998) adopted the idea of asymptotic mean squared error criterion proposed by Ruppert et al.

(1995).
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3. Estimation of Density Function of Response Variable

3.1. Estimation in the simple linear regression

Before we propose estimation technique via a quantile regression, we first consider a prediction

problem for Y given X in the simple linear regression case. Let Y (x) be the Y given X = x. Then

Y (x) ∼ N
(
β0 + β1x, σ

2) .
Let Ŷ (x) = β̂0 + β̂1x, then we it is easy to show that

Y (x)− Ŷ (x)

s

√
1 +

1

n
+

(x− X̄)2

Sxx

∼ t(n− 2),

where

s =

√√√√ 1

n− 2

n∑
i=1

(
Yi − Ŷi

)2
,

Sxx =

n∑
i=1

(
Xi − X̄

)2
.

Therefore, Y (x) is represented briefly as follows :

Y (x)
D→ N

β̂0 + β̂1x, s

√
1 +

1

n
+

(
x− X̄

)2
Sxx

 .

Using this result we can obtain an approximate density of the response variable at x, however,

it is available under very restrictive assumptions such as normality with equal variance for all x.

Therefore, this approach is not realistic for application to the real data sets.

3.2. Estimation using quantile regression

In real data, the error terms hardly follows Gaussian distribution with equal variance. To meet

more realistic situations, we apply nonparametric quantile regression. To do this, we first evaluate

quantile estimates at different values of τ . In this paper, we used quantile estimates at τ =

0.01, 0.10, 0.25, 0.50, 0.75, 0.90, 0.99. For a given x, let ŷ0.01, ŷ0.10, ŷ0.25, ŷ0.50, ŷ0.75, ŷ0.90, ŷ0.99 be

fitted values obtained at each τ . Then, we have the following approximate probabilities for the

response variable.

P (Y ≤ ŷ0.01) = 0.01,

P (ŷ0.01 ≤ Y ≤ ŷ0.10) = 0.09,

P (ŷ0.10 ≤ Y ≤ ŷ0.25) = 0.15,

P (ŷ0.25 ≤ Y ≤ ŷ0.50) = 0.25,

P (ŷ0.50 ≤ Y ≤ ŷ0.75) = 0.25,

P (ŷ0.75 ≤ Y ≤ ŷ0.90) = 0.15,

P (ŷ0.90 ≤ Y ≤ ŷ0.99) = 0.09,

P (Y ≥ ŷ0.99) = 0.01.
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Figure 3.1. Estimation of conditional distribution function (cubic interpolation of histogram based on quantile estimates)

Figure 4.1. Scatter plot for earthquakes data

To obtain the conditional distribution function using seven quantile estimators, we apply the his-

togram method. We calculate the heights that satisfy the above equations and associates each point

smoothly using cubic interpolation. These methods can be easily understood from Figure 3.1. We

propose the conditional distribution function as a smoothing curve obtained by this technique.

4. Example

As an illustrative example, we use the Locations of Earthquakes in Fiji Island data set in R package

(available by typing “quakes{datasets}”; see Figure 4.1 for the scatter plot). We see that dispersion

of response values increases as the covariate increases. We fit the data using a local linear quantile

estimation at different values of τ given in Figure 4.2. The bandwidth was chosen by the method

of Yu and Jones (1998). Finally, a three-dimensional plot for the density function of the response

is given in Figure 4.3.
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Figure 4.2. Nonparametric quantile regression fit in earthquakes data

Figure 4.3. 3D plot for densities of response varuable using R package ‘rgl’ in earthquakes data

5. Concluding Remarks

In estimating confidence region for the fitted values at a specific design point in regression, Gaus-

sian assumptions are allowed to the error terms both in the parametric and the nonparametric

regression. When the homoscedastistic assumptions on the variance of the error terms are doubtful,

heteroscedastistic assumptions are given in addition to the Gaussian assumptions.

In this paper, we proposed a simple method to estimate the distribution of the fitted vales under

heteroscedasticity using the idea of quantile regression. To do this, we evaluated nonparametric
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quantile regression estimate for various values of quantile, and using this result we made a smooth

version of density using the histogram technique and the spline. For easier visualization, a 3D plot

for densities at design points of interest was given. This method would be very useful in recognizing

the quantile fits and the corresponding densities of response variable.
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