DOI QR코드

DOI QR Code

Effects of Fault Parameters on the Ground Motion Synthesized by the Stochastic Green Function Method

추계학적 그린함수법으로 합성된 지반운동에 대한 단층 파라미터의 영향

  • Received : 2011.10.14
  • Accepted : 2011.12.20
  • Published : 2012.02.29

Abstract

In this study, the ground motion was synthesized using the finite fault model by the stochastic green function method, and the difference in the ground motions was evaluated by using various values of the source parameters. An earthquake with a moment magnitude of 6.5 was assumed for the example fault model. The distribution of the slip in the fault plane was calculated using the statistical data of the asperity area. The source parameters considered in this study were the location of the hypocenter in the fault plane and the ratio of the rupture to the shear wave velocity, the rise time, the corner frequency of the source spectrum, and a high frequency filter. The values of the parameters related to the stochastic element source model were adjusted for different tectonic regions, and the others were selected for several possible cases. The response spectra were constructed from the synthesized ground motion time history and compared with the different parameter values. The frequency range affected by each parameter and the differences of the spectral accelerations were evaluated.

이 연구에서는 추계학적 그린함수법에 의한 단층 모델을 이용하여 지진파를 합성하고 단층 파라미터의 변화에 의한 지반 운동의 차이를 평가하였다. 모멘트 규모 6.5의 단층을 예제로 선정하였고 아스페리티 면적의 통계값을 이용하여 슬립의 분포를 모델링하였다. 평가를 위해 고려된 단층 파라미터들은 진원의 위치, 전단파 속도 대비 파열 전파속도 비, 상승시간, 절점주파수 그리고 고주파감쇠 필터 등 이었다. 요소지진원에 적용된 파라미터들은 구조권역별 특성이 다른 지역의 값을 사용하였고 다른 파라미터들은 발생 가능한 임의의 값을 사용하였다. 생성된 지반운동 시간이력으로부터 응답스펙트럼을 작성하였으며, 파라미터의 값을 달리하여 비교하였다. 이로부터 각각의 단층파라미터에 의해 영향을 받는 주파수 구간 및 스펙트럼 가속도의 차이를 평가하였다.

Keywords

References

  1. Hartzell, S.H., "Earthquake aftershocks as Green's functions," Geophysical Research Letters, Vol. 5, 1-4, 1978. https://doi.org/10.1029/GL005i001p00001
  2. Irikura, K., "Semi-empirical estimation of strong ground motions during large earthquakes," Bulletin of the Disaster Prevention Research Institute, Vol. 33, 63-104, 1983.
  3. Irikura, K., and Kamae, K., "Estimation of strong ground motion in broad-frequency band based on a seismic source scaling model and an empirical Green's function technique; Earthquake source mechanics," Annali Di Geofisica, Vol. 37, 1721-1743, 1994.
  4. Velasco, A.A., Ammon, C.J., and Lay, T., "Empirical Green function deconvolution of broadband surface waves: Rupture directivity of the 1992 Landers, California ($M_{w}$=7.3), earthquake," Bulletin of the Seismological Society of America, Vol. 84, No. 3, 735-750. 1994.
  5. Bour, M., and Cara, M., "Test of a simple empirical Green's function method on moderate-sized earthquakes," Bulletin of the Seismological Society of America, Vol. 87, 668-683, 1997.
  6. Hanks, T.C., and Mcguire, R.K., "The character of highfrequency strong ground motion," Bulletin of the Seismological Society of America, Vol. 71, 2071-2095, 1981.
  7. Boore, D.M., "Stochastic simulation of high-frequency ground motions based on seismological models of the radiated spectra," Bulletin of the Seismological Society of America, Vol. 73, 1865-1894, 1983.
  8. Hwang, H., and Huo, J.R., "Generation of hazard-consistent ground motions," Soil Dynamics and Earthquake Engineering, Vol. 13, No. 6, 377-386, 1994. https://doi.org/10.1016/0267-7261(94)90008-6
  9. Kanamori, H., and Anderson, D.L., "Theoretical basis of some empirical relations in seismology," Bulletin of the Seismological Society of America, Vol. 65, No. 5, 1073-1095, 1975.
  10. Boore, D.M., "Simulation of ground motion using the stochastic method," Pure and Applied Geophysics, Vol. 160, 635-676, 2003. https://doi.org/10.1007/PL00012553
  11. Brune, J.N., "Tectonic stress and the spectra of seismic shear waves from earthquakes," Journal of Geophysical Research, Vol. 75, 4997-5009, 1970. https://doi.org/10.1029/JB075i026p04997
  12. Saragoni, G.R., and Hart, G.C., "Simulation of artificial earthquakes," Earthquake Engineering and Structural Dynamics, Vol. 2, 249-267, 1974.
  13. Sholz, C.H., "Scaling laws for large earthquakes: consequences for physical models," Bulletin of the Seismological Society of America, Vol. 72, No. 1, 1-14, 1982.
  14. Somerville, P., Irikura, K., Graves, R., Sawada, S., Wald, D., Abrahamson, N., Iwasakai, Y., Kagawa, T., Smith, N., and Kowada, A., "Characterizing crustal earthquake slip models for the prediction of strong ground motion," Seismological Research Letters, Vol. 70, No. 1, 59-80, 1999. https://doi.org/10.1785/gssrl.70.1.59
  15. Mai, P.M., Spudich, P., and Boatwright, J., "Hypocenter locations in finite-source rupture models," Bulletin of the Seismological Society of America, Vol. 95, No. 3, 965-980, 2005. https://doi.org/10.1785/0120040111
  16. 김정한, 김재관, "안정대륙권역에서의 중규모지진에 의한 근단층지반운동의 모델링," 한국지진공학회논문집, 제10권, 제3 호, 101-111, 2006.
  17. Miyake, H., Iwata, T., and Irikura, K., "Source characterization for broadband ground-motion simulation-kinematic heterogeneous source model and strong motion generation area," Bulletin of the Seismological Society of America, Vol. 93, No. 6, 2531-2545, 2003. https://doi.org/10.1785/0120020183
  18. 연관희, 서정희, "추계학적 지진동모델에 기반한 2D Q 토모그래피 수치모델 역산," 물리탐사, Vol. 10, No. 3, 191-202, 2007.