K ANALYTICAL SCIENCE & TECHNOLOGY Vol. 25 No. 1, 39-49, 2012

http://dx.doi.org/10.5806/AST.2012.25.1.039

# Simultaneous determination of 37 volatile organic compounds at ng/L concentration level in surface water by HS-SPME-GC/MS

Tae-Seung Kim<sup>1</sup>, Suk-Young Hong<sup>1</sup>, Jong-Eun Kim<sup>2</sup>, Hyun-Hee Lim<sup>3</sup> and Ho-Sang Shin<sup>4</sup>, \*

<sup>1</sup>Geum River Environment Research Center, National Institute of Environmental Research, Korea <sup>2</sup>Environmental Waterworks Division, Hong-Seong County Office, Amungil 27, Hongseong Yeup, Hongseong Gun, Chung-Nam Do, Korea <sup>3</sup>Department of Environmental Education, <sup>4</sup>Department of Environmental Science Kongju National University, Shinkwan-dong 182, Kongju, Chung-Nam Do, Korea (Received September 22, 2011; Revised December 14, 2011; Accepted December 16, 2011)

# HS-SPME-GC/MS에 의한 지표수에서 ng/L 농도 수준의 37개 휘발성유기화합물의 동시 분석

김태승<sup>1</sup> · 홍석영<sup>1</sup> · 김종은<sup>2</sup> · 임현희<sup>3</sup> · 신호상<sup>4</sup>, ★ <sup>1</sup>국립환경과학원 금강물환경연구소, <sup>2</sup>충청남도 홍성군청 <sup>3</sup>공주대학교 환경과학과, <sup>4</sup>공주대학교 환경교육과 (2011. 9. 22. 접수, 2011. 12. 14. 수정, 2011. 12. 16. 승인)

**Abstract:** A method to detect 37 volatile organic compounds (VOCs) in surface water was described based on headspace solid-phase micro extraction and gas chromatography-mass spectrometry. VOCs in water were vaporized for 30 min at 40 °C in a headspace vial and adsorbed on 85  $\mu$ m carboxen-polydimethylsiloxane. Under the established condition, the lowest quantification limit was 4.1-96 ng/L by using 4.0 mL water sample, and the relative standard deviation was less than 15% at concentrations of 0.05 and 0.50  $\mu$ g/L. The detection limits meet lower concentration than 1/10 of the water quality criteria for VOCs established by the US EPA or Germany. The LOQ is a sensitivity which the monitoring for the establishing water quality criteria requires. When the proposed method was used to analyze the target compounds in sixteen surface water samples and total 16 VOCs were detected in surface water samples collected from Gum-River. Maximum concentrations of VOCs detected were not exceeded the EPA or Germany guidelines in any of the samples.

**요 약:** HS-SPME GC-MS에 의한 지표수 중에 37개 휘발성유기물질을 동시에 분석하는 방법을 개 발하였다. 이 방법은 물 중 휘발성유기물질을 헤드스페이스 vial에서 40 °C에서 30분간 가열 85 μm carboxen-polydimethylsiloxane에 흡착시키는 방법이다. 4.0 mL의 물 시료를 사용하여 확립한 조건하 에서 정량한계는 4.1-96 ng/L의 범위를 나타냈고 이러한 검출한계는 US EPA 또는 독일에서 확립한 준거치의 1/10 이하 값을 만족시켰으며 0.05 μg/L와 0.50 μg/L의 농도에서 정밀도는 15% 이내를 보

 $<sup>\</sup>star$  Corresponding author

Phone : +82-(0)41-850-8811 Fax : +82-(0)41-850-8810

E-mail : hshin@kongju.ac.kr

였다. 이 정량한계는 준거치를 결정하기 위한 조사연구에서 요구하는 최소 감도이다. 확립한 방법을 사용하여 금강물 16개 시료를 분석한 결과 16개 휘발성유기화합물이 검출되었으며 측정값은 US EPA 또는 독일에서 확립한 준거치 이하의 값을 보였다.

Key words: volatile organic compounds, surface water, headspace solid-phase micro extraction, gas chromatography-mass spectrometry

# 1. Introduction

Volatile organic compounds (VOCs) are organic chemicals that have a high vapor pressure at roomtemperature conditions. According to the European Union,<sup>1</sup> VOC is any organic compound having an initial boiling point less than or equal to 250 measured at a standard atmospheric pressure of 101.3 kPa. VOCs are common contaminants found in surface water. The most commonly known VOCs are halogenated volatile organic compounds (HVOCs), chlorinated short-chain hydrocarbons (CHCs) and monocyclic aromatic hydrocarbons. They are currently used in a wide variety of industries as degreasers, solvents or chemical intermediates, and are also part of gasoline and fuels. Many VOCs are dangerous to human health or cause harm to the environment.

Many methods for the detection of VOCs in water have been reported, such as gas chromatography2-7 and gas chromatography mass spectrometry (GC-MS).8-27 The most effective way for determination of VOCs is by using GC-MS due to its higher confirmatory potential. Sample preparation may largely influence the sensitivity and accuracy of measurements due to the physico-chemical properties of VOCs. Several sample introduction modules were coupled to GC-MS to improve the measurement quality, such as purge and trap (P&T),<sup>8-10</sup> static headspace,<sup>11-13</sup> direct aqueous injection<sup>14</sup> or solid-phase microextraction (SPME).<sup>15-27</sup> SPME is an attractive and advantageous sample preparation method in environmental analysis due to somehow fast and simple sample preparation procedure. Using SPME, the extraction of VOCs from the sample can be done by direct immersion (DI) or by exposing the fiber to the headspace (HS) of the sample. Headspace is discriminatory in nature since only the VOCs in the injection vials can be transferred to the GC system while non-volatile interference will remain in the headspace injection vials. Although DI-SPME is the more widely used technique for semivolatile compounds, HS-SPME is more appropriate for VOCs, especially when they are dirty or complex matrices.

The monitoring for the establishing water quality criteria generally requires lower detection limit than 1/10 value of the water quality criteria for VOCs established by the US EPA or other advanced nations. A sensitive method is needed, which meets the above conditions.

The present study aimed to develop a HS-SPME GC-MS method to detect of 37 VOCs in surface water and to apply the method to real sample analysis. This paper focuses on the validation of sample preparation and detection methodology.

# 2. Materials and Methods

#### 2.1. Materials

All organic solvents used were HPLC grade. Sodium chloride, VOC standards (methyl chloride, methyl bromide, acrolein, 1,1-dichloroethylene, 1,2-transdichloroethylene, 1,1,1-trichloroethane, 1,1-dichloroethane, benzene, acrylonitrile, cis-1,2-dichloroethylene, TCE, PCE, chloroform, toluene, 1,2-dichloropropane, 1,2-dichloroethane, Ethylbenzene, mxylene, p-xylene, o-xylene, dichlorobromomethane, epichlorohydrin, chlorobenzene, styrene, 1,1,2-trichloroethane, chlorodibromomethane, N-butylbenzene, 1,3-dichlorobenzene, 1,4-dichlorobenzene, broboform, 1,3-dichloropropylene, 1,1,2,2-tetrabromoethane, 1,2dichlorobenzene, hexachlorobutadiene, 1,2,4-trichlorobenzene, 1,2-dibromo-3-chloropropane, naphthalene), fluorobenzene and d4-1,2-dichlorobenzene as internal standards were obtained from SigmaAldrich (St. Louis, MO, USA). Commercially available SPME fibers (100 µm polydimethylsiloxane (PDMS), 65 µm polydimethylsiloxane-divinylbenzene (PDMS-DVB), 85 µm polyacrylate (PA), and 85 µm carboxenpolydimethylsiloxane (CAR-PDMS) fused-silica fibers) were purchased from Supelco (Bellefonte, PA, USA).

# 2.2. Apparatus

The analytical instruments used were an Agilent 6890 A gas chromatograph with a split/splitless injector (Agilent Technologies, Santa Clara, CA, USA) and Agilent 5973 N mass spectrometer (Agilent Technologies, Santa Clara, CA, USA). Combipal Autosampler (Agilent Technologies, Santa Clara, CA, USA), which allows automated HS-SPME injections, were used. The ion source was operated in the electron ionization mode (EI; 70 eV). Fullscan mass spectra (m/z 30-400) were recorded for analyte identification. An HP-InnoWax capillary column (60 m  $\times$  0.25 mm I.D.  $\times$  0.25  $\mu$ m film thickness) was used. Samples were injected in the splitless mode. The flow rate of helium as a carrier gas was 1.0 mL/ min. The injector temperature was set at 210 °C. The oven temperature programs were set as follows. The initial temperature of 35 °C was held for 3 min and then increased to the final temperature of 220 °C at 8 °C/min. The ions selected by SIM were as shown in Table 1.

# 2.3. SPME fibers

CAR-PDMS fused-silica fiber was evaluated for the VOCs detection. The fiber was initially conditioned according to the instructions of the manufacturer to remove contaminants and to stabilize the solidphase. Conditioning was carried out in an extra split/ splitless port with helium carrier gas prior to each adsorption.

## 2.4. Extraction/derivatization procedures

Surface water samples were collected from 16 basins in the Gum River without headspace in 40 mL VOC bottles containing 1 drop of 2 M HCl. The sampling sites were selected to uniformly represent all streams of the River. A volume of 4 mL sample

of water were placed in a 10 mL vial. 40  $\mu$ L of d4-1,2-dichlorobenzene (0.01 mg/L) as the internal standards and 0.5 g of sodium chloride were add to the sample, and vial was sealed with a septum lined cap.

The extraction was performed with a 85 µm carboxenpolydimethylsiloxane (CAR/PDMS) fiber and using magnetic stirring at 600 rpm. The fiber was conditioned prior to the first use with the temperature and conditioning recommendations described by the manufacturer. Before extraction, the vial was preheated for 5 min at 50 °C; then, the fiber was placed into the headspace of the vial and extraction was carried out for 30 min at 40 °C. After the sorption process, the SPME fiber was immediately desorbed at 280 °C for 5 min on the GC injection port.

#### 2.5. Calibration and quantification

Calibration curves were established by adding standard solutions and internal standard solutions in a control water (a surface water). Sodium chloride (0.5 g) were added to the solutions. The corresponding concentrations of the standards were in the range of 0.01-5.0  $\mu$ g/L. The ions selected for quantification were as in Table 1. The ratios of the VOC peak areas to the peak area of internal standard (fluorobenzene for analytes below retention time 15.6 min or d4-1,2-dichlorobenzene for analytes above retention time 18.1 min) were used to quantify the compound .

The lowest limit of detection (LOD) and limit of quantification (LOQ) were determined as the concentration of the standard solution resulting in a signal-to-noise ratio of 3:1 and 10:1, respectively.

# 3. Results and Discussion

#### 3.1. Condition of SPME fibers

Four SPME fibers (PDMS, PDMS-DVB, PA and CAR-PDMS) were evaluated to select a suitable fiber for detecting the VOCs. The adsorption efficiencies on the SPME fibers were evaluated by comparing the areas of the VOC peaks. The highest efficiency was obtained using 85 µm carboxen-polydimethyl-siloxane (CAR-PDMS) among the four fibers, and



Fig. 1. GC-MS chromatogram from spiked water sample (methyl chloride 5.101 min, methyl bromide 5.212 min, acrolein 5.319 min, 1,1-dichloroethylene 5.427 min, 1,2-trans-dichloroethylene 7.02 min, 1,1,1-trichloroethane 7.09, 1,1-dichloroethane 7.078 min, benzene 7.990 min, acrylonitrile 8.021 min, cis-1,2-dichloroethylene 8.867 min, TCE 8.893 min, PCE 9.422 min, chloroform 9.402 min, toluene 9.833 min, 1,2dichloropropane 9.873 min, 1,2-dichloroethane 10.302 min, ethylbenzene 11.401 min, m-xylene 11.564 min, p-xylene 11.721 min, o-xylene 12.630 min, dichlorobromomethane 12.03 min, epichlorohydrin 12.138 min, chlorobenzene 13.263 min, styrene 14.10 min, 1,1,2-trichloroethane 14.126 min, chlorodibromomethane 14.848 min, N-butylbenzene 15.14 min, 1,3dichlorobenzene 17.025 min, 1,4-dichlo-robenzene 17.540 min, broboform 17.527 min, 1,3-dichloropropylene 17.630 min, 1,1,2,2,-tetrabromoethane 17.673 min, 1,2-dichlorobenzene 18.336 min, hexachlorobutadiene 18.342 min, 1,2,4-trichlorobenzene 20.795 min, 1,2-dibromo-3-chloropropane 21.430 min, naphthalene 22.395 min).

CAR-PDMS was selected as a fiber suitable for detecting VOCs. The adsorption efficiencies on the PDMS-DVB, the PDMS and the PA were 90, 85 and 37% compared to that of CAR-PDMS. The heating temperature and time of VOCs were 30 min at 40, which were somewhat modified values of the conditions established by Park or Ezquerro.<sup>28,29</sup>

#### 3.2. Chromatography

The optimum conditions were applied to the analysis of the VOCs. *Fig.* 1 shows a GC-MS chromatogram of the VOCs. For the GC separation of all VOCs, the use of a semi-polar stationary phase (InnoWax) was found to be efficient. VOCs showed sharp peaks, and the compound was quantified as integration of peak area. The retention times of VOC

Table 1. The quantification ions and qualification ions of VOCs

|                             | Ouantifica- | Oualification |  |  |
|-----------------------------|-------------|---------------|--|--|
| Compounds                   | tion ion    | ions          |  |  |
| Methyl chloride             | 50          | 52            |  |  |
| Methyl bromide              | 94          | 96            |  |  |
| 1,1-Dichloroethylene        | 61          | 96, 98        |  |  |
| 1,2-trans-Dichloroethylene  | 61          | 96, 98        |  |  |
| 1,1,1-Trichloroethane       | 97          | 99, 61        |  |  |
| 1,1-Dichloroethane          | 63          | 65            |  |  |
| Benzene                     | 78          | 77            |  |  |
| cis-1,2-Dichloroethylene    | 61          | 96, 98        |  |  |
| Trichloroethylene           | 130         | 132, 95       |  |  |
| Tetrachloroethylene         | 166         | 164, 129      |  |  |
| Chloroform                  | 83          | 85            |  |  |
| Toluene                     | 91          | 92            |  |  |
| 1,2-Dichloropropane         | 63          | 62, 76        |  |  |
| 1,2-Dichloroethane          | 62          | 64, 49        |  |  |
| Ethylbenzene                | 91          | 106, 92       |  |  |
| m-Xylene                    | 91          | 106, 105      |  |  |
| p-Xylene                    | 91          | 106, 105      |  |  |
| o-Xylene                    | 91          | 106, 105      |  |  |
| Dichlorobromomethane        | 83          | 85, 129       |  |  |
| Chlorobenzene               | 112         | 114,77        |  |  |
| Styrene                     | 104         | 103, 78       |  |  |
| 1,1,2-Trichloroethane       | 97          | 83, 61        |  |  |
| Chlorodibromomethane        | 129         | 127, 131      |  |  |
| N-Butylbenzene              | 91          | 92, 134       |  |  |
| 1,3-Dichlorobenzene         | 146         | 148, 111      |  |  |
| 1,4-Dichlorobenzene         | 146         | 148, 111      |  |  |
| Bromoform                   | 173         | 171, 175      |  |  |
| 1,3-Dichloropropylene       | 75          | 77, 110       |  |  |
| 1,1,2,2,-Tetrabromoethane   | 266         | 264, 185      |  |  |
| 1,2-Dichlorobenzene         | 146         | 148, 111      |  |  |
| Hexachlorobutadiene         | 225         | 227, 223      |  |  |
| 1,2,4-Trichlorobenzene      | 180         | 182, 145      |  |  |
| 1,2-Dibromo-3-chloropropane | 157         | 155, 75       |  |  |
| Naphthalene                 | 128         | 127, 102      |  |  |
| Acrylonitrile               | 53          | 52, 51        |  |  |
| Acrolein                    | 56          | 55            |  |  |
| Epichlorohyrin              | 57          | 49            |  |  |

standards and internal standards are shown in *Fig.* 1. No extraneous peak was observed in the chromatograms near the retention times of analytes.

#### 3.3. Validation of the assay

LOQ, calculated as described in materials and methods, were estimated from this study. The method detection limit (LOD and LOQ) in this study was shown in *Table 2*. The combination of a high yield and the high sensitivity of the analytes by HS-SPME

| Compounds                    | Unit  | LOD    | LOQ    | WQC                  | WQC/10               |
|------------------------------|-------|--------|--------|----------------------|----------------------|
| Methyl chloride              | μg/L  | 2.1    | 6.9    |                      | 3.0                  |
| Methyl bromide               | μg/L  | 1.9    | 6.2    |                      | 4.7                  |
| 1,1-Dichloroethylene         | μg/L  | 0.0024 | 0.0078 | 5.7×10 <sup>-2</sup> | $5.7 \times 10^{-3}$ |
| 1,2-trans-Dichloroethylene   | μg/L  | 0.0021 | 0.0065 | $7.0 \times 10^{2}$  | $7.0 \times 10^{1}$  |
| 1,1,1-Trichloroethane        | μg/L  | 0.0013 | 0.0041 | $2.0 \times 10^{2}$  | $2.0 \times 10^{1}$  |
| 1,1-Dichloroethane           | μg/L  | 0.0064 | 0.0210 | $5.7 \times 10^{-1}$ | 5.7×10 <sup>-2</sup> |
| Benzene                      | μg/L  | 0.0087 | 0.0280 | 2.2                  | 0.22                 |
| cis-1,2-Dichloroethylene     | μg/L  | 0.0056 | 0.0180 | 70                   | 7.0                  |
| Trichloroethylene (TCE)      | μg/L  | 0.0061 | 0.0190 | 2.5                  | 0.25                 |
| Tetrachloroethylene (PCE)    | μg/L  | 0.0057 | 0.0180 | 0.63                 | 0.063                |
| Chloroform                   | μg/L  | 0.0057 | 0.0180 | 5.7                  | 0.57                 |
| Toluene                      | μg/L  | 0.0129 | 0.0410 | $6.8 \times 10^{3}$  | $6.8 \times 10^{2}$  |
| 1,2-Dichloropropane          | μg/L  | 0.0044 | 0.0140 | 5.0×10 <sup>-1</sup> | 5.0×10 <sup>-2</sup> |
| 1,2-Dichloroethane           | μg/L  | 0.0033 | 0.0100 | $3.8 \times 10^{-1}$ | $3.8 \times 10^{-2}$ |
| Ethylbenzene                 | μg/L  | 0.0193 | 0.0610 | 3.1*                 | 0.31*                |
| m-Xylene                     | μg/L  | 0.0205 | 0.0650 | 2.0*                 | 0.2 *                |
| p-Xylene                     | μg/L  | 0.0155 | 0.0490 | 2.0*                 | 0.2 *                |
| o-Xylene                     | μg/L  | 0.0302 | 0.0960 | 2.0*                 | 0.2 *                |
| Dichlorobromometane          | μg/L  | 0.0063 | 0.0200 | 0.55                 | 0.055                |
| Chlorobenzene                | μg/L  | 0.0041 | 0.0130 | $1.3 \times 10^{2}$  | $1.3 \times 10^{1}$  |
| Styrene                      | μg/L  | 0.0028 | 0.0090 | 100                  | 10                   |
| 1,1,2-Trichloroethane        | μg/L  | 0.0036 | 0.0110 | 0.6                  | 0.06                 |
| Chlorodibromomethane         | μg/L  | 0.0050 | 0.0160 | 0.4                  | 0.04                 |
| N-Butylbenzene               | μg/L  | 0.0018 | 0.0057 | -                    | -                    |
| 1,3-Dichlorobenzene          | μg/L  | 0.0022 | 0.0070 | $3.2 \times 10^{2}$  | $3.2 \times 10^{1}$  |
| 1,4-Dichlorobenzene          | μg/L  | 0.0046 | 0.0150 | 6.14*                | 0.64*                |
| Bromoform                    | μg/L  | 0.0060 | 0.0190 | 4.3                  | 0.43                 |
| 1,1,2,2-Tetrabromoethane     | μg/L  | 0.0027 | 0.0087 | -                    | -                    |
| Hexachlorobutadiene          | μg/L  | 0.0022 | 0.0070 | 0.44                 | 0.044                |
| 1,2,4-Trichlorobenzene       | μg/L  | 0.0023 | 0.0075 | 8.73*                | 0.873*               |
| 1,2-Dibrom o-3-chloropropane | μg/L  | 0.0015 | 0.0047 | 0.2                  | 0.02                 |
| Naphthalene                  | μg/L  | 0.0020 | 0.0064 | 100                  | 10                   |
| 1,3-Dichloropropylene        | μg/L  | 0.0017 | 0.0054 | 10                   | 1.0                  |
| 1,2-Dichlorobenzene          | μg/L  | 0.0020 | 0.0062 | $2.7 \times 10^{3}$  | $2.7 \times 10^{2}$  |
| Acrylonitrile                | μg/L  | 0.0010 | 0.0040 | $4.0 \times 10^{-2}$ | 0.0051               |
| Acrolein                     | μg/L  | 0.9440 | 3.0070 | $1.90 \times 10^{2}$ | 19.0                 |
| Epichlorohydrin              | µg/L_ | 0.0500 | 0.1600 |                      | 3.0                  |

\*Suggested by Germany

and GC-MS (SIM) permit the detection of VOCs at concentrations well below those reported previously.

The US Environmental Protection Agency<sup>30</sup> has established water quality criteria for human health for VOCs between 0.057  $\mu$ g/L and 6800  $\mu$ g/L as shown in *Table* 2. In Korea, water quality criteria (WQC) for VOCs have not yet been established excepts for benzene and toluene, but they may be necessary to review water quality criteria after enough monitoring and risk assessment have been completed. Establishing water quality criteria for human health through the monitoring, requires a sensitive analytical method with more low detection limit than the water quality criteria established in other nations (generally

| Compounds                    | Unit | Conc. range     | Calibration curves | $R^2$  |
|------------------------------|------|-----------------|--------------------|--------|
| Methyl chloride              | μg/L | 5~100           | Y=0.0706x+0.0057   | 0.9993 |
| Methyl bromide               | μg/L | 5~100           | Y=0.9214x+0.0012   | 0.9966 |
| 1,1-Dichloroethylene         | μg/L | 0.01~0.5        | Y=0.0587x+0.0003   | 0.9970 |
| 1,2-trans-Dichloroethylene   | μg/L | 0.01~0.5        | Y=0.0401x+0.0007   | 0.9955 |
| 1,1,1-Trichloroethane        | μg/L | 0.01~0.5        | Y=0.4843x+0.0005   | 0.9982 |
| 1,1-Dichloroethane           | μg/L | $0.02 \sim 0.5$ | Y=0.046x+0.0006    | 0.9961 |
| Benzene                      | μg/L | 0.03~0.5        | Y=1.0081x-0.0005   | 0.9977 |
| cis-1,2-Dichloroethylene     | μg/L | $0.02 \sim 0.5$ | Y=0.1196x-0.0013   | 0.9979 |
| Trichloroethylene (TCE)      | μg/L | 0.02~5          | Y=0.2043x+0.0171   | 0.9988 |
| Tetrachloroethylene (PCE)    | μg/L | $0.02 \sim 0.5$ | Y=1.1521x+0.0067   | 0.9998 |
| Chloroform                   | μg/L | 0.02~5          | Y=0.1987x+0.005    | 0.9998 |
| Toluene                      | μg/L | 0.05~5          | Y=3.9107x+0.2091   | 0.9994 |
| 1,2-Dichloropropane          | μg/L | $0.01 \sim 1$   | Y=0.6268x+0.0285   | 0.9951 |
| 1,2-Dichloroethane           | μg/L | 0.01~0.5        | Y=0.1302x+0.0017   | 0.9970 |
| Ethylbenzene                 | μg/L | $0.1 \sim 2.0$  | Y=8.5411x+0.0105   | 0.9988 |
| m-Xylene                     | μg/L | $0.1 \sim 1.0$  | Y=5.9696x-0.0417   | 0.9968 |
| p-Xylene                     | μg/L | $0.1 \sim 1.0$  | Y=7.6735x+0.1281   | 0.9952 |
| o-Xylene                     | μg/L | 0.1~1.0         | Y=8.6218x-0.0785   | 0.9971 |
| Dichlorobromometane          | μg/L | 0.01 - 1.0      | Y=0.2925x+0.0034   | 0.9976 |
| Chlorobenzene                | μg/L | 0.01~0.5        | Y=3.4967x+0.0482   | 0.9990 |
| Styrene                      | μg/L | 0.01~0.5        | Y=3.9683x+0.0101   | 0.9995 |
| 1,1,2-Trichloroethane        | μg/L | 0.01~0.5        | Y=0.6902x-0.0023   | 0.9996 |
| Chlorodibromomethane         | μg/L | 0.01~0.5        | Y=0.3149x-0.0032   | 0.9966 |
| N-Butylbenzene               | μg/L | 0.01~0.5        | Y=14.037x+0.0692   | 0.9975 |
| 1,3-Dichlorobenzene          | μg/L | 0.01~0.5        | Y=4.3976x+0.0127   | 0.9990 |
| 1,4-Dichlorobenzene          | μg/L | 0.01~0.5        | Y=4.4176x+0.0202   | 0.9969 |
| Bromoform                    | μg/L | 0.01~0.5        | Y=0.0122x+0.0001   | 0.9913 |
| 1,2-Dichlorobenzene          | μg/L | 0.01~0.5        | Y=4.427x+0.0419    | 0.9958 |
| Hexachlorobutadiene          | μg/L | 0.01~0.5        | Y=1.9288x+0.0169   | 0.9962 |
| 1,2,4-Trichlorobenzene       | μg/L | 0.01~0.5        | Y=3.6679x+0.0192   | 0.9972 |
| 1,2-Dibrom o-3-chloropropane | μg/L | 0.01~0.5        | Y=0.0092x-0.0001   | 0.9973 |
| Naphthalene                  | μg/L | 0.01~0.5        | Y=10.199x+0.1213   | 0.9977 |
| 1,3-Dichloropropylene        | μg/L | 0.01~0.5        | Y=0.196x-0.00004   | 0.9985 |
| 1,1,2,2-Tetrabromoethane     | μg/L | 0.01~0.5        | Y=0.5046x+0.0088   | 0.9971 |
| Acrylonitrile                | μg/L | 0.005~0.0.1     | Y=1.9415x+0.0019   | 0.9989 |
| Acrolein                     | μg/L | 5~100           | Y=0.3402x-0.0004   | 0.9981 |
| Epichlorohydrin              | μg/L | 0.1~5           | Y=0.1468x+0.0012   | 0.9995 |

Table 3. The standard curves and linearities of VOCs in water

1/10 WQC). The LOQs of all VOCs in this study meet lower concentration than 1/10 of the water quality criteria for VOCs established by the US EPA or Germany as shown in *Table* 2.

Examination of the typical standard curve by computing a regression line of the peak area ratios of VOCs to internal standard on the concentration using a least-squares fit demonstrated a linear relationship with correlation coefficient of above 0.99. The line of best fits for VOCs are as in *Table* 3.

The precision and accuracy of the assay were very good, as shown in *Table* 4. For five independent determinations at the concentration range of 0.05-0.5  $\mu$ g/L, the relative standard deviation was less than 15%.

3.4. River sample analysis

| Compounds                  | Spiked Conc.<br>(µg/L) | Calculated Conc.<br>Mean ± SD (µg/L) | alculated Conc. Accuracy<br>ean $\pm$ SD (µg/L) (%) |                        |  |
|----------------------------|------------------------|--------------------------------------|-----------------------------------------------------|------------------------|--|
|                            | 10                     | 10.22±0.751                          | 102.2                                               | 7.4                    |  |
| Methyl chloride            | 50                     | 49.83±3.400                          | 99.6                                                | 6.8                    |  |
|                            | 10                     | 10.39±0.928                          | 103.6                                               | 8.9                    |  |
| Methyl bromide             | 50                     | 49.98±1.671                          | 96.9                                                | 3.4                    |  |
|                            | 0.05                   | 0.046±0.003                          | 92                                                  | 8.6                    |  |
| l,l-Dichloroethylene       | 0.5                    | $0.453 {\pm} 0.028$                  | 90                                                  | 6.3                    |  |
|                            | 0.05                   | $0.048 \pm 0.003$                    | 96                                                  | 6.0                    |  |
| 1,2-trans-Dichloroethylene | 0.5                    | $0.468 {\pm} 0.028$                  | 94                                                  | 6.3                    |  |
| 1 1 1 m 1 1 1              | 0.05                   | $0.049 \pm 0.004$                    | 97                                                  | 7.6                    |  |
| 1,1,1-Irichloroethane      | 0.5                    | 0.495±0.022                          | 99                                                  | 4.4                    |  |
|                            | 0.05                   | 0.051±0.005                          | 101.2                                               | 10.4                   |  |
| 1,1-Dichloroethane         | 0.5                    | $0.500 \pm 0.040$                    | 100                                                 | 8.1                    |  |
|                            | 0.1                    | 0.096±0.007                          | 96                                                  | 7.6                    |  |
| Benzene                    | 0.5                    | 0.479±0.013                          | 96                                                  | 2.8                    |  |
|                            | 0.05                   | 0.050±0.0026                         | 101                                                 | 5.3                    |  |
| cis-1,2-Dichloroethylene   | 0.5                    | 0.468±0.036                          | 94                                                  | 7.9                    |  |
|                            | 0.05                   | 0.055±0.0047                         | 112                                                 | 8.5                    |  |
| TCE                        | 0.5                    | 0.485±0.020                          | 97                                                  | 4.2                    |  |
|                            | 0.05                   | $0.049 \pm 0.004$                    | 98                                                  | 7.6                    |  |
| PCE                        | 0.5                    | 0.479±0.019                          | 96                                                  | 4.1                    |  |
|                            | 0.1                    | 0.093±0.013                          | 94                                                  | 13.7                   |  |
| Toluene                    | 0.5                    | 0.532±0.023                          | 106                                                 | 4.5                    |  |
|                            | 0.1                    | 0 104±0 010                          | 104                                                 | 9.8                    |  |
| Ethylbenzene               | 0.5                    | 0.470±0.032                          | 94                                                  | 6.9                    |  |
|                            | 0.1                    | 0 105±0 008                          | 105                                                 | 8.1                    |  |
| m-Xylene                   | 0.5                    | $0.523 \pm 0.040$                    | 103                                                 | 7.6                    |  |
|                            | 0.1                    | 0 108+0 010                          | 108                                                 | 9.7                    |  |
| p-Xylene                   | 0.5                    | $0.507 \pm 0.011$                    | 102                                                 | 2.2                    |  |
|                            | 0.1                    | 0.088+0.009                          | 88                                                  | 10.2                   |  |
| o-Xylene                   | 0.5                    | $0.477 \pm 0.018$                    | 95                                                  | 3.9                    |  |
|                            | 0.05                   | 0.048+0.001                          | 97                                                  | 2.3                    |  |
| Chloroform                 | 0.05                   | $0.0481\pm0.016$                     | 96                                                  | 3.3                    |  |
|                            | 0.05                   | 0.048+0.001                          | 07                                                  | 2.4                    |  |
| 1,2-Dichloropropane        | 0.5                    | $0.500\pm0.034$                      | 100                                                 | 2. <del>4</del><br>6.8 |  |
|                            | 0.05                   | 0.048±0.004                          | 06                                                  | 0.0                    |  |
| 1,2-Dichloroethane         | 0.05                   | $0.0484\pm0.004$                     | 90<br>98                                            | 9.2<br>3.8             |  |
|                            | 0.05                   | 0.044+0.004                          | 00                                                  | 0.0                    |  |
| Dichlorobromometanee       | 0.05                   | $0.044 \pm 0.004$                    | 88                                                  | 9.6                    |  |

Table 4. Intra-day laboratory precision and accuracy results for the analysis of VOCs in water (n=5)

We used the proposed method to analyze the target VOCs in sixteen surface water samples. No interfering peak was observed in the chromatograms near the retention times of analytes due to discriminatory nature of SPME. Total 16 VOCs were detected in surface water samples collected from Gum River in

| Come ounds                   | Spiked Conc. | Calculated Conc.           | Accuracy | Precision |
|------------------------------|--------------|----------------------------|----------|-----------|
| Compounds                    | (µg/L)       | Mean $\pm$ SD ( $\mu$ g/L) | (%)      | (%)       |
| 1.2 Di-hl-m-m-m-l-n-         | 0.05         | $0.048 \pm 0.003$          | 97       | 7.0       |
| 1,5-Dichloropropylene        | 0.5          | $0.510 \pm 0.034$          | 102      | 6.7       |
| Chlorobonzono                | 0.05         | $0.053 \pm 0.004$          | 106      | 8.2       |
| Chlorobenzene                | 0.5          | $0.518 \pm 0.010$          | 104      | 2.0       |
| Sturono                      | 0.05         | $0.055 {\pm} 0.008$        | 112      | 14.5      |
| Styrene                      | 0.5          | $0.511 \pm 0.041$          | 102      | 8.1       |
| 1 1 2 Triablaraathana        | 0.05         | $0.054 {\pm} 0.003$        | 107      | 5.8       |
| 1,1,2-Inchloroeutane         | 0.5          | $0.500 \pm 0.039$          | 100      | 8.0       |
| Chilene d'ibreen en ethere e | 0.05         | $0.046 \pm 0.004$          | 93       | 9.3       |
| Chlorodibromomethane         | 0.5          | $0.482 \pm 0.021$          | 96       | 4.4       |
| N Dutul harmon a             | 0.05         | $0.055 \pm 0.0078$         | 110      | 14.2      |
| N-Butyl benzene              | 0.5          | $0.493 \pm 0.011$          | 98       | 2.2       |
|                              | 0.05         | $0.056 \pm 0.006$          | 112      | 10.8      |
| 1,3-Dichlorobenzene          | 0.5          | $0.528 \pm 0.024$          | 105.7    | 4.6       |
|                              | 0.05         | 0.056±0.006                | 113      | 11.4      |
| 1,4-Dichlorobenzene          | 0.5          | $0.526 \pm 0.025$          | 105.4    | 4.9       |
| <br>DC                       | 0.05         | 0.055±0.005                | 111      | 9.3       |
| Bromotorm                    | 0.5          | $0.483 \pm 0.029$          | 96       | 6.1       |
|                              | 0.05         | 0.056±0.004                | 112      | 6.8       |
| 1,1,2,2-1etrabromoethane     | 0.5          | $0.498 \pm 0.023$          | 99       | 4.8       |
|                              | 0.05         | 0.046±0.003                | 93       | 7.7       |
| 1,2-Dichlorobenzene          | 0.5          | $0.494 \pm 0.019$          | 98       | 4.0       |
|                              | 0.05         | 0.049±0.005                | 98       | 10.6      |
| Hexachiorobutadiene          | 0.5          | $0.492 \pm 0.013$          | 98       | 2.7       |
|                              | 0.05         | $0.044 \pm 0.004$          | 89       | 9.5       |
| 1,2,4-Irichlorobenzene       | 0.5          | $0.477 \pm 0.010$          | 95       | 2.2       |
|                              | 0.05         | $0.045 \pm 0.004$          | 90       | 9.3       |
| 1,2-Dibromo-3-chloropropane  | 0.5          | $0.049 \pm 0.011$          | 98       | 2.4       |
|                              | 0.05         | 0.051±0.001                | 102      | 5.3       |
| Naphthalene                  | 0.5          | $0.519 \pm 0.018$          | 104      | 6.6       |
|                              | 0.025        | $0.024 \pm 0.002$          | 96       | 5.1       |
| Acrylonitrile                | 0.1          | $0.0984 {\pm} 0.009$       | 98.4     | 8.7       |
|                              | 10           | 9.193±0.386                | 91.9     | 4.2       |
| Acrolein                     | 50           | 48.7±3.11                  | 97.6     | 6.4       |
|                              | 10           | 9.475±0.371                | 94.8     | 3.9       |
| Epichlorohy drin             | 50           | 51.024±3.723               | 102.0    | 7.3       |

Table 4. Continued

the concentration range and frequency as following: 1,1,1-Trichloroethane (0.01-0.02  $\mu$ g/L, 19%), benzene (0.06-0.13  $\mu$ g/L, 100%), TCE (0.02-0.17  $\mu$ g/L, 25%), PCE (0.02-0.03  $\mu$ g/L, 13%), chloroform (0.03-1.04  $\mu$ g/L, 75%), toluene (0.10-0.18  $\mu$ g/L, 100%), 1,2-

dichloropropane (0.06 µg/L, 6%), 1,2-dichloroethane (0.09 µg/L, 6%), ethylbenzene (0.12-1.07 µg/L, 100%), m-xylene (0.12-0.26 µg/L, 100%), p-xylene (0.22-0.34 µg/L, 100%), o-xylene (0.19-0.37 µg/L, 100%), dichlorobromometane (0.02-0.28 µg/L, 50%), styrene

Table 5. Analytical results of VOCs in real sample

| (unit: | $\mu g/L$ ) |
|--------|-------------|
| (unit. | μg/L        |

| Compounds\Sample            | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    |
|-----------------------------|------|------|------|------|------|------|------|------|
| Methyl chloride             | ND   |
| Methyl bromide              | ND   |
| 1,1-Dichloroethylene        | ND   |
| 1,2-trans-Dichloroethylene  | ND   |
| 1,1,1-Trichloroethane       | ND   | 0.01 | 0.02 | ND   | 0.02 | ND   | ND   | ND   |
| 1,1-Dichloroethane          | ND   |
| Benzene                     | 0.09 | 0.07 | 0.06 | 0.07 | 0.07 | 0.07 | 0.06 | 0.09 |
| cis-1,2-Dichloroethylene    | ND   |
| Trichloroethylene (TCE)     | ND   | 0.17 | ND   | 0.06 | 0.02 | ND   | ND   | ND   |
| Tetrachloroethylene (PCE)   | ND   | ND   | ND   | 0.02 | 0.03 | ND   | ND   | ND   |
| Chloroform                  | ND   | 0.61 | 0.13 | 0.21 | 0.14 | 0.36 | 1.04 | ND   |
| Toluene                     | 0.14 | 0.18 | 0.12 | 0.10 | 0.10 | 0.11 | 0.12 | 0.10 |
| 1,2-Dichloropropane         | ND   | 0.06 | ND   | ND   | ND   | ND   | ND   | ND   |
| 1,2-Dichloroethane          | ND   | ND   | ND   | ND   | ND   | 0.09 | ND   | ND   |
| Ethylbenzene                | 0.12 | 0.15 | 0.13 | 0.14 | 0.15 | 0.13 | 0.12 | 0.12 |
| m-Xylene                    | 0.15 | 0.16 | 0.15 | 0.15 | 0.26 | 0.14 | 0.14 | 0.14 |
| p-Xylene                    | 0.25 | 0.29 | 0.26 | 0.27 | 0.34 | 0.25 | 0.26 | 0.25 |
| o-Xylene                    | 0.21 | 0.26 | 0.21 | 0.25 | 0.37 | 0.21 | 0.21 | 0.21 |
| Dichlorobromometane         | ND   | 0.11 | 0.02 | 0.03 | 0.03 | 0.06 | 0.28 | ND   |
| Chlorobenzene               | ND   |
| Styrene                     | ND   | 0.02 | ND   | ND   | ND   | ND   | ND   | ND   |
| 1,1,2-Trichloroethane       | ND   |
| Chlorodibromomethane        | ND   | 0.04 | 0.02 | ND   | 0.04 | 0.05 | 0.14 | ND   |
| N-Butylbenzene              | ND   |
| 1,3-Dichlorobenzene         | ND   |
| 1,4-Dichlorobenzene         | ND   |
| Bromoform                   | ND   |
| 1,2-Dichlorobenzene         | ND   |
| Hexachlorobutadiene         | ND   |
| 1,2,4-Trichlorobenzene      | ND   |
| 1,2-Dibromo-3-chloropropane | ND   |
| Naphthalene                 | ND   |
| 1,3-Dichloropropylene       | ND   |
| 1,1,2,2-Tetrabromoethane    | ND   |
| Acrylonitrile               | ND   |
| Acrolein                    | ND   |
| Epichlorohydrin             | ND   |

(0.01-0.02  $\mu$ g/L, 19%), chlorodibromomethane (0.02-0.14  $\mu$ g/L, 63%) and naphthalene (0.01  $\mu$ g/L, 6%). The results of VOCs are as in *Table* 5.

Some compounds such as benzene, toluene, ethylbenzene, m-xylene, p-xylene and o-xylene were detected in all samples due to originate from gasoline. Maximum concentrations of VOCs detected were not exceeded the EPA guidelines in any of the samples. Especially, VOCs detected in surface showed significantly lower than the EPA or Germany guidelines.<sup>30</sup>

# 4. Conclusion

In this paper, we present a simple and automatic method to detect VOCs in surface water samples.

Table 5. Continued

| Compounds\Sample            | 9    | 10    | 11   | 12   | 13   | 14   | 15   | 16   |
|-----------------------------|------|-------|------|------|------|------|------|------|
| Methyl chloride             | ND   | ND    | ND   | ND   | ND   | ND   | ND   | ND   |
| Methyl bromide              | ND   | ND    | ND   | ND   | ND   | ND   | ND   | ND   |
| 1,1-Dichloroethylene        | ND   | ND    | ND   | ND   | ND   | ND   | ND   | ND   |
| 1,2-trans-Dichloroethylene  | ND   | ND    | ND   | ND   | ND   | ND   | ND   | ND   |
| 1,1,1-Trichloroethane       | ND   | ND    | ND   | ND   | ND   | ND   | ND   | ND   |
| 1,1-Dichloroethane          | ND   | ND    | ND   | ND   | ND   | ND   | ND   | ND   |
| Benzene                     | 0.08 | 0.013 | 0.08 | 0.10 | 0.07 | 0.07 | 0.10 | 0.09 |
| cis-1,2-Dichloroethylene    | ND   | ND    | ND   | ND   | ND   | ND   | ND   | ND   |
| Trichloroethylene (TCE)     | ND   | 0.06  | ND   | ND   | ND   | ND   | ND   | ND   |
| Tetrachloroethylene (PCE)   | ND   | ND    | ND   | ND   | ND   | ND   | ND   | ND   |
| Chloroform                  | 0.03 | ND    | 0.09 | ND   | 0.27 | 0.05 | 0.11 | 0.05 |
| Toluene                     | 0.11 | 0.15  | 0.10 | 0.13 | 0.10 | 0.10 | 0.13 | 0.10 |
| 1,2-Dichloropropane         | ND   | ND    | ND   | ND   | ND   | ND   | ND   | ND   |
| 1,2-Dichloroethane          | ND   | ND    | ND   | ND   | ND   | ND   | ND   | ND   |
| Ethylbenzene                | 0.12 | 0.13  | 1.07 | 0.12 | 0.12 | 0.12 | 0.13 | 0.12 |
| m-Xylene                    | 0.15 | 0.15  | 0.12 | 0.14 | 0.14 | 0.13 | 0.15 | 0.13 |
| p-Xylene                    | 0.26 | 0.27  | 0.22 | 0.24 | 0.25 | 0.24 | 0.28 | 0.23 |
| o-Xylene                    | 0.21 | 0.24  | 0.19 | 0.21 | 0.20 | 0.20 | 0.25 | 0.20 |
| Dichlorobromometane         | ND   | ND    | 0.06 | ND   | ND   | ND   | 0.03 | ND   |
| Chlorobenzene               | ND   | ND    | ND   | ND   | ND   | ND   | ND   | ND   |
| Styrene                     | ND   | 0.01  | ND   | ND   | ND   | ND   | 0.01 | ND   |
| 1,1,2-Trichloroethane       | ND   | ND    | ND   | ND   | ND   | ND   | ND   | ND   |
| Chlorodibromomethane        | 0.02 | 0.02  | 0.04 | ND   | ND   | ND   | 0.03 | 0.02 |
| N-Butylbenzene              | ND   | ND    | ND   | ND   | ND   | ND   | ND   | ND   |
| 1,3-Dichlorobenzene         | ND   | ND    | ND   | ND   | ND   | ND   | ND   | ND   |
| 1,4-Dichlorobenzene         | ND   | ND    | ND   | ND   | ND   | ND   | ND   | ND   |
| Bromoform                   | ND   | ND    | ND   | ND   | ND   | ND   | ND   | ND   |
| 1,2-Dichlorobenzene         | ND   | ND    | ND   | ND   | ND   | ND   | ND   | ND   |
| Hexachlorobutadiene         | ND   | ND    | ND   | ND   | ND   | ND   | ND   | ND   |
| 1,2,4-Trichlorobenzene      | ND   | ND    | ND   | ND   | ND   | ND   | ND   | ND   |
| 1,2-Dibromo-3-chloropropane | ND   | ND    | ND   | ND   | ND   | ND   | ND   | ND   |
| Naphthalene                 | ND   | ND    | ND   | ND   | ND   | ND   | 0.01 | ND   |
| 1,3-Dichloropropylene       | ND   | ND    | ND   | ND   | ND   | ND   | ND   | ND   |
| 1,1,2,2-Tetrabromoethane    | ND   | ND    | ND   | ND   | ND   | ND   | ND   | ND   |
| Acrylonitrile               | ND   | ND    | ND   | ND   | ND   | ND   | ND   | ND   |
| Acrolein                    | ND   | ND    | ND   | ND   | ND   | ND   | ND   | ND   |
| Epichlorohydrin             | ND   | ND    | ND   | ND   | ND   | ND   | ND   | ND   |

The LOQs of VOCs were significantly lower than the EPA or Germany guidelines, and the accuracy and precision of this method were very good. The relative standard deviation was less than 15%. We used the proposed method to analyze the target VOCs in sixteen surface water samples. Total 16 VOCs were detected in surface water samples collected from Gum-River. Maximum concentrations of VOCs detected were not exceeded the EPA guidelines in any of the samples. We will further use this method to detect VOCs in surface water and perform the risk assessment of the detected compounds.

# Reference

1. Directive 2004/42/CE of the european parliament and of the council of 21 April 2004 on the limitation of

emissions of volatile organic compounds due to the use of organic solvents in certain paints and varnishes and vehicle refinishing products and amending Directive 199/13/EC.

- R. M. Cavalcante, M. V. F. de Andrade and R. V. Marins, *Microchem. J.*, 96(2), 337-343 (2010).
- F. Ruiz-Bevia, M. J. Fernandez-Torres and M. P. Blasco-Alemany, *Anal. Chim. Acta*, 632(2), 304-314 (2009).
- C. V. Antoniou, E. E. Koukouraki and E. Diamadopoulos, J. Chromatogr. A, 1132(1/2), 310-314 (2006).
- M. K. Zanjani, Y. Yamini and S. Shariati, J. Hazard. Mat., 136(3), 714-720 (2006).
- M. A. Mottaleb, M. Z. Abedin and M. S. Islam, *J. Environ.* Sci., 16(3), 497-501 (2004).
- X. Li, X. Xu and X. Wang, Int. J. Environ. Anal. Chem., 84(9), 633-645 (2004).
- H. Liu, Y. Liu, B. Wu, H. Nian, H. Chen, K. Chiu and J. Lo, *Talanta*, **80**, 903-908 (2009).
- G. J. Lee, H. S. Pyo and S. J. Park, *Bull. Kor. Chem.* Soc., 22(2), 171-178 (2001).
- T. Huybrechts, J. Dewulf and O. Moerman, *J. Chromatogr.* A, 893(2), 367-382 (2000).
- V. I. Safarova, S. V. Sapelnikova, E. V. Djazhenko, G. I. Teplova, G. F. Shajdulina and F. K. Kudasheva, J. Chromatogr. B, 800, 325-330 (2004).
- M. Petri, J. Jiang and M. Maier, *J. Environ. Manage*. 91, 142-148 (2009).
- Missaoui Inès and Sayedi Lotfi, J. Chromatogr. Sci., 47(4), 257-262 (2009).
- C. Aeppli, M. Berg, T. B. Hofstetter, R. Kipfer and R. P. Schwarzenbach, J. Chromatogr. A, 1181, 116-124 (2008).
- P. Bocchini, C. Andalo, D. Bonfiglioli and G. C. Galletti, *Rapid Commun. Mass Spectrom.*, 13, 2133-2139 (1999).
- 16. C. V. Antoniou, E. E. Koukouraki and E. Diamadopoulos,

J. Chromatogr. A, 1132, 310-314 (2006).

- A. A. M. Hassan, E. Benfenati, G. Facchini and R. Fanelli, *Toxicol. Environ. Chem.*, 55, 73-81 (1996).
- M. A. Stack, G. Fitzgerald, S. O'Connell and K. J. James, *Chemosphere*, **41**, 1821-1826 (2000).
- B. Pons, M. A. Fernandez-Torroba, G. Ortiz and M. T. Tena, Int. J. Environ. Anal. Chem., 83, 495-506 (2003).
- V. H. Niri, L. Bragg and J. Pawliszyn, J. Chromatogr. A, 1201, 222-227 (2008).
- G. Pecoraino, L. Scalici, G. Avellone, L. Ceraulo, R. Favara, E. G. Candela, M. C. Provenzano and C. Scaletta, *Wat. Res.*, 42, 3563-3577 (2008).
- A. D. Guimaraes, J. J. Carvalho, C. GonCalves and M. D. F. Alpendurada, *Int. J. Environ. Anal. Chem.*, 88, 151-164 (2008).
- N. Jakubowska, B. Zygmunt, Z. Polkowska, B. Zabiegała and J. Namiésnik, J. Chromatogr. A, 1216, 422-441 (2009).
- N. Jakubowska, B. Henkelmann and K.-W. Schramm, J. Chromatogr. Sci., 47(8), 689-693 (2009).
- M. I. Cervera, J. Beltran and F. J. Lopez, *Anal. Chim. Acta*, **704**(1/2), 87-97 (2011).
- M. A. Jochmann, X. Yuan and T. C. Schmidt, *Anal. Bioanal. Chem.*, 387(6), 2163-2174 (2007).
- S. Nakamura and S. Daishima, *Anal. Chim. Acta*, 548(1/2), 79-85 (2005).
- 28. S. H. Park, K. H. Kim, H. S. Yang, J. Y. Ha, K. H. Lee, J. W. Ahn, *Anal. Sci. Tech.*, **21**(2), 93-101 (2008).
- Ó. Ezquerro, G. Ortiz, B. Pons, M. T. Tena, *J. Chromatogr. A*, **1035**, 17-22 (2004).
- US Environmental Protection Agency, National Recommended Water Quality Criteria, EPA-822-R-02-047, Washington, DC, USA, 2002.