DOI QR코드

DOI QR Code

DNA Mediated Energy Transfer from 4',6-Diamidino-2-phenylindole to tetra- and bis-cationic Porphyrins at Low Binding Densities

  • Gong, Lindan (Department of Chemistry, Yeungnam University) ;
  • Ryu, Jae-Ki (Department of Biomedical Laboratory Science, Gimcheon University) ;
  • Kim, Bok-Jo (Department of Biomedical Laboratory Science, Gyungwoon University) ;
  • Jang, Yoon-Jung (Department of Chemistry, Yeungnam University)
  • Received : 2011.10.24
  • Accepted : 2011.12.08
  • Published : 2012.02.20

Abstract

The fluorescence of 4',6-diamidino-2-phenylindole (DAPI) bound to DNA at a [DAPI]/[DNA base] ratio of 0.005 was quenched by meso-tetrakis(N-methylpyridinium-4-yl)porphyrin (TMPyP) or cis-bis(N-methylpyridinium-4-yl)porphyrin (BMPyP) when both DAPI and either porphyrin spontaneously bound to the same DNA strand. The quenching was investigated using the "one-dimensional inner sphere" and the "F$\ddot{o}$rster resonance energy transfer" (FRET) models. Total quenching occurred when DAPI and TMPyP were up to 19.3 base pairs or $66\AA$ apart. BMPyP could quench the fluorescence up to 13.9 base pairs or $47\AA$. TMPyP, which intercalated between the DNA base-pairs, appeared to be a better acceptor than BMPyP, which stacked along the DNA stem. The higher quenching and higher resonance energy transfer efficiency of TMPyP was due to the larger overlap integral between its absorption spectrum and the emission spectrum of DNA-bound DAPI.

Keywords

References

  1. Nunez, M. E.; Barton, J. K. Curr. Opin. Struct. Biol. 2000, 4, 199- 206. https://doi.org/10.1016/S1367-5931(99)00075-7
  2. Boon, E. M.; Barton, J. K. Curr. Opin. Struct. Biol. 2002, 12, 320- 329. https://doi.org/10.1016/S0959-440X(02)00327-5
  3. Giese, B. Curr. Opin. Chem. Biol. 2002, 6, 612-618. https://doi.org/10.1016/S1367-5931(02)00364-2
  4. Wagenknecht, H.-A. Angew. Chem. Int. Ed. 2003, 42, 2454-2460. https://doi.org/10.1002/anie.200301629
  5. Wagenknecht, H.-A. Nat. Prod. Rep. 2006, 23, 973-1006. https://doi.org/10.1039/b504754b
  6. Murphy, C. J.; Arkin, M. R.; Jenkins, Y.; Ghatlia, N. D.; Bossmann, S. H., Turro, N. J.; Barton, J. K. Science 1993, 262, 1025. https://doi.org/10.1126/science.7802858
  7. Schuster, G. B. Acc. Chem. Res. 2000, 33, 253-260. https://doi.org/10.1021/ar980059z
  8. Giese, B. Acc. Chem. Res. 2000, 33, 631-636. https://doi.org/10.1021/ar990040b
  9. Takada, T.; Kawai, K.; Tojo, S.; Majima. T. Tetrahedron Lett. 2003, 44, 3851-3854. https://doi.org/10.1016/S0040-4039(03)00666-X
  10. Kawai, K.; Kodera, H.; Osakada, Y.; Majima, T. Nature Chem. 2009, 1, 156-159. https://doi.org/10.1038/nchem.171
  11. Lakhno, V. D.; Sultanov, V. B.; Pettitt, B. M. Chem. Phys. Lett. 2004, 400, 47-53. https://doi.org/10.1016/j.cplett.2004.10.077
  12. Rak, J.; Makowska, J.; Voityuk. A. A. Chem. Phys. 2006, 325, 567-574. https://doi.org/10.1016/j.chemphys.2006.02.002
  13. Sadowska-Aleksiejew, A.; Rak, J.; Voityuk, A. A. Chem. Phys. Lett. 2006, 429, 546-550. https://doi.org/10.1016/j.cplett.2006.08.050
  14. Murphy, C. J.; Arkin, M. R.; Ghatlia, N. D.; Bossmann, S.; Turro N. J.; Barton. J. K. Proc. Natl. Acad. Sci. USA 1994, 91, 5315- 5319. https://doi.org/10.1073/pnas.91.12.5315
  15. Nunez, M. E,; Noyes, K. T.; Barton, J. K. Chem. Biol. 2002, 9, 403-415. https://doi.org/10.1016/S1074-5521(02)00121-7
  16. Kelly, S. O.; Jackson, N. M.; Hill, M. G.; Barton, J. K. Angew. Chem. Int. Ed. 1999, 38, 941-945. https://doi.org/10.1002/(SICI)1521-3773(19990401)38:7<941::AID-ANIE941>3.0.CO;2-7
  17. Vainrub, A.; Pettitt, B. M. Chem. Phys. Lett. 2000, 323, 160-166. https://doi.org/10.1016/S0009-2614(00)00512-1
  18. Park, S. J.; Taton, T. A.; Mirkin, C. A. Science 2002, 295, 1503- 1506.
  19. Porath, D.; Cuniberti, G.; Di Felice, G. R. Charge Transport in DNA-based Devices, In Topics in Current Chemistry; Vol. 237, Shuster, G. B., Ed.; Springer: Berlin, 2004; pp 183-228.
  20. Lilley, D. M. J.; Wilson, T. J. Curr. Opin. Chem. Biol. 2000, 4, 507-517. https://doi.org/10.1016/S1367-5931(00)00124-1
  21. Murata, S.-I.; Kuoeba, J.; Piszczek, G.; Gryczynski, I.; Lakowicz, J. R. Biopolymers 2000, 57, 306-315. https://doi.org/10.1002/1097-0282(2000)57:5<306::AID-BIP70>3.0.CO;2-7
  22. Kang, J. S.; Lakowicz, J. R. J. Biochem. Mol. Biol. 2001, 34, 551- 558.
  23. Malicka, J.; Gryczynski, I.; Fang, J.; Kusba, J.; Lakowicz, J. R. Anal. Biochem. 2003, 315, 160-169. https://doi.org/10.1016/S0003-2697(02)00710-8
  24. Lee, B. W.; Moon, S. J.; Youn, M. R.; Kim, J. H.; Jang, H. G.; Kim, S. K. Biophys. J. 2003, 85, 3865-3871. https://doi.org/10.1016/S0006-3495(03)74801-2
  25. Yun, B. H.; Kim, J.-O.; Lee, B. W.; Lincoln, P.; Nordén, B.; Kim, J.-M.; Kim, S. K. J. Phys. Chem. B. 2003, 107, 9858-9864. https://doi.org/10.1021/jp027828n
  26. Youn, M. R.; Moon, S. J.; Lee, B. W.; Lee, D.-J.; Kim, J.-M.; Kim, S. K. Bull. Korean Chem. Soc. 2005, 26, 537-542. https://doi.org/10.5012/bkcs.2005.26.4.537
  27. Choi, J. Y.; Lee, J.-M.; Lee, H.; Jung, M. J.; Kim, S. K.; Kim, J.- M. Biophys. Chem. 2008, 134, 56-63. https://doi.org/10.1016/j.bpc.2008.01.006
  28. Jin, B.; Lee, H. M.; Lee, Y.-A.; Ko, J. H.; Kim, C.; Kim, S. K. J. Am. Chem. Soc. 2005, 127, 2417-2424. https://doi.org/10.1021/ja044555w
  29. Jin, B.; Min, K. S.; Han, S. W.; Kim, S. K. Biophys. Chem. 2009, 144, 38-45. https://doi.org/10.1016/j.bpc.2009.06.003
  30. Larsen, T. A.; Goodsell, D. S.; Cascio, D.; Grzeskowiak, K.; Dickerson, R. E. J. Biomol. Struct. Dyn. 1989, 7, 477-491. https://doi.org/10.1080/07391102.1989.10508505
  31. Vlieghe, D.; Sponer, J.; Van Meervelt, L. Biochemistry 1999, 38, 16443-16451. https://doi.org/10.1021/bi9907882
  32. Kim, H.-K; Kim, J.-M.; Kim, S. K.; Rodger, A.; Norden, B. Biochemistry 1996, 35, 1187-1194. https://doi.org/10.1021/bi951913m
  33. Lakowiz, J. R. Principles of Fluorescence Spectroscopy; 3rd ed. Springer, New York, 2006; pp 443-472.
  34. Jin, B.; Ahn, J. E.; Ko, J. H.; Wang, W.; Han, S. W.; Kim, S. K. J. Phys. Chem. B. 2008, 112, 15875-15882. https://doi.org/10.1021/jp801274u
  35. Lee, Y.-A.; Lee, S.; Cho, T.-S.; Kim, C.; Han, S. W.; Kim, S. K. J. Phys. Chem. B. 2002, 106, 11351-11355. https://doi.org/10.1021/jp025924i
  36. Ismail, M.; Rodger, P. M.; Rodger, A. J. Biomol. Struct. Dyn. 2000, Conversation 11, 335-348.
  37. Cavatorta, P.; Masotti, L.; Szabo, A. G. Biophys. Chem. 1985, 22, 11-16. https://doi.org/10.1016/0301-4622(85)80021-1
  38. Szabo, A. G.; Krajcarski, D. T.; Cavatorta, P.; Masotti, L.; Barcellona, M. L. Photochem. Photobiol. 1985, 44, 143-150. https://doi.org/10.1111/j.1751-1097.1986.tb03578.x
  39. Pasternack, R. F.; Caccam, M.; Keogh, B.; Stephenson, T. A.; Williams, A. P.; Gibbs, E. J. J. Am. Chem. Soc. 1991, 113, 6835- 6840. https://doi.org/10.1021/ja00018a019