DOI QR코드

DOI QR Code

Synthesis of CdS, ZnS, and CdS/ZnS Core/Shell Nanocrystals Using Dodecanethiol

  • Niu, Jinzhong (Key Laboratory for Special Functional Materials of Ministry of Education, Henan University) ;
  • Xu, Weiwei (Key Laboratory for Special Functional Materials of Ministry of Education, Henan University) ;
  • Shen, Huaibin (Key Laboratory for Special Functional Materials of Ministry of Education, Henan University) ;
  • Li, Sen (Key Laboratory for Special Functional Materials of Ministry of Education, Henan University) ;
  • Wang, Hongzhe (Key Laboratory for Special Functional Materials of Ministry of Education, Henan University) ;
  • Li, Lin Song (Key Laboratory for Special Functional Materials of Ministry of Education, Henan University)
  • Received : 2011.09.27
  • Accepted : 2011.11.23
  • Published : 2012.02.20

Abstract

We report a new route to synthesize high quality zinc blende CdS and ZnS nanocrystals in noncoordinating solvent 1-octadecene, using dodecanethiol (DDT) molecules as both the sulfur source and surface capping ligands. Different reaction temperatures and Cd(Zn)/DDT molar ratios were tested to optimize the synthesis conditions. Absorption photoluminescence (PL) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) pattern, and transmission electron microscopy (TEM) were used to characterize assynthesized nanocrystals. The narrow half width at the half-maximum on the long wavelength side of the firstexcitonic absorption peak and TEM images demonstrated nearly monodisperse size distributions of asprepared CdS, ZnS, and CdS/ZnS core/shell nanocrystals. Only trap emissions of the nanocrystals were detected when the amount of DDT was excessive, this came from the strong quenching effect of thiol groups on the nanocrystal surfaces. After overcoating with ZnS shells, band-gap emissions of CdS nanocrystals were partially recovered.

Keywords

References

  1. Brus, L. J. Phys. Chem. 1986, 90, 2555. https://doi.org/10.1021/j100403a003
  2. Murray, C. B.; Norris, D. J.; Bawendi, M. G. J. Am. Chem. Soc. 1993, 115, 8706. https://doi.org/10.1021/ja00072a025
  3. Peng, Z. A.; Peng, X. J. Am. Chem. Soc. 2001, 123, 183. https://doi.org/10.1021/ja003633m
  4. Yu, W. W.; Peng, X. Angew. Chem. Int. Ed. 2002, 41, 2368. https://doi.org/10.1002/1521-3773(20020703)41:13<2368::AID-ANIE2368>3.0.CO;2-G
  5. Tong, H.; Zhu, Y. J. Nanotechnology 2006, 17, 845. https://doi.org/10.1088/0957-4484/17/3/039
  6. Lee, M.; Han, S.; Jeon, Y. J. Bull. Korean Chem. Soc. 2010, 31, 3818. https://doi.org/10.5012/bkcs.2010.31.12.3818
  7. Li, L. S.; Pradhan, N.; Wang, Y. J.; Peng, X. G. Nano Lett. 2004, 4, 2261. https://doi.org/10.1021/nl048650e
  8. Panda, A. B.; Acharya, S.; Efrima, S.; Golan, Y. Langmuir 2007, 23, 765. https://doi.org/10.1021/la061633f
  9. Wang, Y.; Yang, H.; Xia, Z.; Tong, Z.; Zhou, L. Bull. Korean Chem. Soc. 2011, 32, 2316. https://doi.org/10.5012/bkcs.2011.32.7.2316
  10. Lee, S. S.; Seo, K. W.; Yoon, S. H.; Shim, I. W.; Byun, K. T.; Kwak, H. Y. Bull. Korean Chem. Soc. 2005, 26, 1579. https://doi.org/10.5012/bkcs.2005.26.10.1579
  11. Neo, M. S.; Venkatram, N.; Li, G. S.; Chin, W. S.; Ji, W. J. Phys. Chem. C 2010, 114, 18037. https://doi.org/10.1021/jp104311j
  12. Li, J. J.; Wang, Y. A.; Guo, W.; Keay, J. C.; Mishima, T. D.; Johanson, M. B.; Peng, X. J. Am. Chem. Soc. 2003, 125, 12567. https://doi.org/10.1021/ja0363563
  13. Chen, L.; Chen, Y. B.; Wu, L. M. J. Am. Chem. Soc. 2004, 126, 16334. https://doi.org/10.1021/ja045074f
  14. Jasieniak, J.; Mulvaney, P. J. Am. Chem. Soc. 2007, 129, 2841. https://doi.org/10.1021/ja066205a
  15. Smith, A. M.; Duan, H.; Rhyner, M. N.; Ruan, G.; Nie, S. Phys. Chem. Chem. Phys. 2006, 8, 3895. https://doi.org/10.1039/b606572b
  16. Liu, I. S.; Lo, H. H.; Chien, C. T.; Lin, Y. Y.; Chen, C. W.; Chen, Y. F.; Su, W. F.; Liou, S. C. J. Mater. Chem. 2008, 18, 675. https://doi.org/10.1039/b715253a
  17. Yu, W. W.; Wang, Y. A.; Peng, X. Chem. Mater. 2003, 15, 4300. https://doi.org/10.1021/cm034729t
  18. Bowers, M. J.; McBride, J. R.; Rosenthal, S. J. J. Am. Chem. Soc. 2005, 127, 15378. https://doi.org/10.1021/ja055470d
  19. Lim, S. J.; Chon, B.; Joo, T.; Shin, S. K. J. Phys. Chem. C 2008, 112, 1744. https://doi.org/10.1021/jp710648g
  20. Talapin, D. V.; Mekis, I.; Götzinger, S.; Kornowski, A.; Benson, O.; Weller, H. J. Phys. Chem. B 2004, 108, 18826. https://doi.org/10.1021/jp046481g
  21. Li, X.; Shen, H.; Li, S.; Niu, J. Z.; Wang, H.; Li, L. S. J. Mater. Chem. 2010, 20, 923. https://doi.org/10.1039/b917837f
  22. Chen, Y.; Vela, J.; Htoon, H.; Casson, J. L.; Werder, D. J.; Bussian, D. A.; Klimov, V. I.; Hollingsworth, J. A. J. Am. Chem. Soc. 2008, 130, 5026. https://doi.org/10.1021/ja711379k
  23. Steckel, J. S.; Zimmer, J. P.; Coe-Sullivan, S.; Stott, N. E.; Bulovic, V.; Bawendi, M. G. Angew. Chem. Int. Ed. 2004, 43, 2154. https://doi.org/10.1002/anie.200453728
  24. Wang, J.; Long, Y.; Zhang, Y.; Zhong, X.; Zhu, L. Chem. Phys. Chem. 2009, 10, 680. https://doi.org/10.1002/cphc.200800672
  25. Lim, J.; Jun, S.; Jang, E.; Baik, H.; Kim, H.; Cho, J. Adv. Mater. 2007, 19, 1927. https://doi.org/10.1002/adma.200602642
  26. Protiere, M.; Reiss, P. Small 2007, 3, 399. https://doi.org/10.1002/smll.200600581

Cited by

  1. Nanocrystal Ink as a Cathode Material for Spray-Deposited, Large-Area Dye-Sensitized Solar Cells vol.7, pp.10, 2013, https://doi.org/10.1021/nn404272j
  2. Chemical synthesis and optical characterization of regular and magic-sized CdS quantum dot nanocrystals using 1-dodecanethiol vol.30, pp.07, 2015, https://doi.org/10.1557/jmr.2015.57
  3. nanoparticles using 1-dodecanethiol as sulfur source vol.54, pp.8S1, 2015, https://doi.org/10.7567/JJAP.54.08KA10
  4. Synthesis of Semiconductor Nanocrystals, Focusing on Nontoxic and Earth-Abundant Materials vol.116, pp.18, 2016, https://doi.org/10.1021/acs.chemrev.6b00116
  5. Spectral and Luminescence Properties of Sols and Coatings Containing CdS/ZnS QDs and Polyvinylpyrrolidone vol.120, pp.3, 2016, https://doi.org/10.1134/S0030400X16030061
  6. Biomineralization of PbS and PbS–CdS core–shell nanocrystals and their application in quantum dot sensitized solar cells vol.4, pp.16, 2016, https://doi.org/10.1039/C5TA10534J
  7. Synthesis of CdO/ZnS heterojunction for photodegradation of organic dye molecules vol.123, pp.6, 2017, https://doi.org/10.1007/s00339-017-1013-3
  8. Influence of dimensionality and interface type on optical and electronic properties of CdS/ZnS core-shell nanocrystals—A first-principles study vol.143, pp.16, 2015, https://doi.org/10.1063/1.4933058
  9. Facile Microwave-assisted Synthesis Manganese Doped Zinc Sulfide Nanoparticles vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-34268-z
  10. Synthesis of CdS Nanocrystals with Different Shapes via a Colloidal Method vol.35, pp.2, 2012, https://doi.org/10.5012/bkcs.2014.35.2.397
  11. The Influence of Polyvinylpyrrolidone Molecular Weight on the Structure and the Spectral and Nonlinear Optical Properties of Composite Materials with CdS/ZnS Nanoparticles vol.125, pp.5, 2018, https://doi.org/10.1134/s0030400x18110103
  12. Dual and Multi-Emission Hybrid Micelles Realized through Coordination-Driven Self-Assembly vol.13, pp.2, 2012, https://doi.org/10.3390/ma13020440
  13. Quantum dots’ size matters for balancing their quantity and quality in label materials to improve lateral flow immunoassay performance for C-reactive protein determination vol.199, pp.None, 2012, https://doi.org/10.1016/j.bios.2021.113892