DOI QR코드

DOI QR Code

Synthesis and Structures of New Silaanthracenophanes

  • Lee, In-Sook (Advanced Institute of Convergence Technology, Nanobrick Co., Ltd.) ;
  • Ahn, Mi-Hye (Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University) ;
  • Kumar, M. Anil (Department of Nanomaterial Chemistry, Dongguk University) ;
  • Lee, Uk (Department of Chemistry, Pukyong National University) ;
  • Ohshita, Joji (Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University) ;
  • Kwak, Young-Woo (Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University)
  • Received : 2011.10.06
  • Accepted : 2011.11.22
  • Published : 2012.01.20

Abstract

A new series of silaanthracenophanes 2-5 composed of 1,8-diethynylanthracene unit has been synthesized from silylation reactions of 1,8-di(lithioethynyl)anthracene with 1,3-dichloro-1,1,3,3-tetraalkyldisiloxanes and 1,2-dichlorotetramethyldisilane. The silaanthracenophane products 2-4 were characterized by spectroscopic methods and X-ray crystallographic analysis.

Keywords

References

  1. Fang, M.-C.; Watanabe, A.; Matsuda, M. Macromolecules 1996, 29, 6807. https://doi.org/10.1021/ma960398c
  2. Ishikawa, M.; Ohshita, J. In Handbook of Organic Conductive Molecules and Polymers, Vol. 2, Nalwa, H. S., Ed.; Wiley, New York, 1997; pp 685-718.
  3. Chen, R.-M.; Chien, K.-M.; Wong, K.-T.; Jin, B.-Y.; Luh, T.-Y. J. Am. Chem. Soc. 1997, 119, 11321. https://doi.org/10.1021/ja971373b
  4. Kim, H. K.; Ryu, M.-K.; Lee, S. M. Macromolecules 1997, 30, 1236. https://doi.org/10.1021/ma961295x
  5. Seo, I. K.; Park, Y. T.; Kim, Y.-R. Bull. Korean Chem. Soc. 1999, 20, 677.
  6. Mori, A.; Takahisa, E.; Kajiro, H.; Nishihara, Y. Macromolecules 2000, 33, 1115. https://doi.org/10.1021/ma9913360
  7. Lukevics, E.; Ryabova, V.; Arsenyan, P.; Belyakov, S.; Popelis, J.; Pudova, O. J. Organomet. Chem. 2000, 610, 8. https://doi.org/10.1016/S0022-328X(00)00340-5
  8. Matsumi, N.; Chujo, Y. Polym. J. 2001, 33, 383. https://doi.org/10.1295/polymj.33.383
  9. Morisaki, Y.; Fujimura, F.; Chujo, Y. Organometallics 2003, 22, 3553. https://doi.org/10.1021/om020808n
  10. Ohshita, J.; Yoshimoto, K.; Tada, Y.; Harima, Y.; Kunai, A.; Kunugi, Y.; Yamashita, K. J. Organomet. Chem. 2003, 678, 33. https://doi.org/10.1016/S0022-328X(03)00394-2
  11. Lee, T.; Jung, I.; Song, K. H.; Baik, C.; Kim, S.; Kim, D.; Kang, S. O.; Ko, J. Organometallics 2004, 23, 4184. https://doi.org/10.1021/om049878f
  12. Cheng, Y.-J.; Luh, T.-Y. Chem. Commun. 2006, 4669.
  13. Wang, H.-W.; Yeh, M.-Y.; Chen, C.-H.; Lim, T.-S.; Fann, W.; Luh, T.-Y. Macromolecules 2008, 41, 2762. https://doi.org/10.1021/ma800089d
  14. Lee, I.-S.; Kwak, Y.-W.; Kim, D.-H.; Cho, Y.; Ohshita, J. J. Organomet. Chem. 2008, 693, 3233. https://doi.org/10.1016/j.jorganchem.2008.07.030
  15. Lee, I.-S.; Lee, C. G.; Kwak, Y.-W.; Gal, Y.-S. Bull. Korean Chem. Soc. 2009, 30, 309. https://doi.org/10.5012/bkcs.2009.30.2.309
  16. Adachi, A.; Ohshita, J.; Ohno, T.; Kunai, A.; Manhart, S. A.; Okita, K.; Kido, J. Appl. Organometal. Chem. 1999, 13, 859. https://doi.org/10.1002/(SICI)1099-0739(199912)13:12<859::AID-AOC929>3.0.CO;2-6
  17. Manhart, S. A.; Adachi, A.; Sakamaki, K.; Okita, K.; Ohshita, J.; Ohno, T.; Hamaguchi, T.; Kunai, A.; Kido, J. J. Organomet. Chem. 1999, 592, 52. https://doi.org/10.1016/S0022-328X(99)00481-7
  18. Wong, W.-Y.; Lee, A. W.-M.; Wong, C.- K.; Lu, G.-L.; Zhang, H.; Mo, T.; Lam, K.-T. New J. Chem. 2002, 26, 354. https://doi.org/10.1039/b108510g
  19. Gleiter, R.; Schafer, W.; Sakurai, H. J. Am. Chem. Soc. 1985, 107, 3046. https://doi.org/10.1021/ja00297a009
  20. Sakurai, H.; Sugiyama, H.; Kira, M. J. Phys. Chem. 1990, 94, 1837. https://doi.org/10.1021/j100368a022
  21. Ohshita, J.; Kunai, A. Acta Polym. 1998, 49, 379. https://doi.org/10.1002/(SICI)1521-4044(199808)49:8<379::AID-APOL379>3.0.CO;2-Z
  22. Yao, J.; Son, D. Y. Organometallics 1999, 18, 1736. https://doi.org/10.1021/om990040f
  23. Nakanishi, W.; Hitosugi, S.; Piskareva, A.; Shimada, Y.; Taka, H.; Kita, H.; Isobe, H. Angew. Chem. Int. Ed. 2010, 49, 7239. https://doi.org/10.1002/anie.201002432
  24. Nakanishi, W.; Hitosugi, S.; Shimada, Y.; Isobe, H. Chem. Asian J. 2011, 6, 554. https://doi.org/10.1002/asia.201000543
  25. Kuehl, C. J.; Huang, S. D.; Stang, P. J. J. Am. Chem. Soc. 2001, 123, 9634. https://doi.org/10.1021/ja0114355
  26. Kuehl, C. J.; Yamamoto, T.; Seidel, S. R.; Stang, P. J. Org. Lett. 2002, 4, 913. https://doi.org/10.1021/ol017296d
  27. Resendiz, M. J. E.; Noveron, J. C.; Disteldorf, H.; Fischer, S.; Stang, P. J. Org. Lett. 2004, 6, 651. https://doi.org/10.1021/ol035587b
  28. Bar, A. K.; Shanmugaraju, S.; Chi, K.-W.; Mukherjee, P. S. Dalton Trans. 2011, 40, 2257. https://doi.org/10.1039/c0dt01048k
  29. Lee, S. K.; Kang, J. Bull. Korean Chem. Soc. 2011, 32, 1228. https://doi.org/10.5012/bkcs.2011.32.4.1228
  30. House, H. O.; Hrabie, J. A.; VanDerveer, D. J. Org. Chem. 1986, 51, 921. https://doi.org/10.1021/jo00356a031
  31. Katz, H. E. J. Org. Chem. 1989, 54, 2179. https://doi.org/10.1021/jo00270a030
  32. STOE STADI4, X-RED & X-SHAPE; X-ray Structure Evaluation Package; STOE & Cie Gmbh, Darmstadt, Germany, 1996. (Revision 1.06). STOE & Cie Gmbh, Hilpertstrasse 10, D64295 Darmstadt, Germany.
  33. Bruker, Saint (Version 6.12) and Smart (Version 5.631), Bruker AXS Inc., Madison, Wisconsin, USA, 1997.
  34. Sheldrick, G. M. SADABS; University of Gottingen, Gottingen, Germany, 1999.
  35. Sheldrick, G. M. Acta Crystallogr. Sect. A 1990, A46, 467.
  36. Sheldrick, G. M. SHELXL97-2; University of Gottingen, Gottingen, Germany, 1997.
  37. Lee, C. W.; Hwang, G. T.; Kim, B. H. Tetrahedron Lett. 2000, 41, 4177. https://doi.org/10.1016/S0040-4039(00)00599-2
  38. Sudhakar, S.; Lee, G. H.; Wang, Y.; Hsu, J. H.; Luh, T.-Y. J. Organomet. Chem. 2002, 646, 167. https://doi.org/10.1016/S0022-328X(01)01213-X
  39. Kwak, Y.-W.; Lee, I.-S.; Baek, M.-K.; Lee, U.; Choi, H.-J.; Ishikawa, M.; Naka, A.; Ohshita, J.; Lee, K.-H.; Kunai, A. Organometallics 2006, 25, 48. https://doi.org/10.1021/om050375z
  40. Kai, H.; Ohshita, J.; Ohara, S.; Nakayama, N.; Kunai, A.; Lee, I.-S.; Kwak, Y.-W. J. Organomet. Chem. 2008, 693, 3490. https://doi.org/10.1016/j.jorganchem.2008.08.018
  41. Pavia, D. L.; Lampman, G. M.; Kriz, G. S.; Vyvyan, J. R. In Introduction to Spectroscopy, 4th ed.; Brooks/Cole: Cengage Learning, 2009; pp 128-130.
  42. Fang, M.-C.; Watanabe, A.; Ito, O.; Matsuda, M. Macromolecules 1996, 489, 15.
  43. Suto, S.; Ono, R.; Shimizu, M.; Goto, T.; Watanabe, A.; Fang, M.-C.; Matsuda, M. J. Lumin. 2000, 87-89, 773. https://doi.org/10.1016/S0022-2313(99)00396-8
  44. Tsuji, H.; Shibano, Y.; Takahashi, T.; Kumada, M.; Tamao, K. Bull. Chem. Soc. Jpn. 2005, 78, 1334. https://doi.org/10.1246/bcsj.78.1334
  45. Sakurai, H. Adv. Inorg. Chem. 2000, 50, 359. https://doi.org/10.1016/S0898-8838(00)50008-7
  46. Csakvari, B.; Wagner, Zs.; Gomory, P.; Mijlhoff, F. C.; Rozsondai, B.; Hargittai, I. J. Organomet. Chem. 1976, 107, 287. https://doi.org/10.1016/S0022-328X(00)91519-5
  47. Cho, H. M.; Lee, J.-E.; Lee, M. E.; Lee, K. M. J. Organomet. Chem. 2011, 696, 2754. https://doi.org/10.1016/j.jorganchem.2011.04.025