DOI QR코드

DOI QR Code

Synthesis and High Photocatalytic Activity of Zn-doped TiO2 Nanoparticles by Sol-gel and Ammonia-Evaporation Method

  • 투고 : 2011.08.13
  • 심사 : 2011.11.22
  • 발행 : 2012.01.20

초록

Photocatalysis has been applied to decompose the waste and toxic materials produced in daily life and in the global environment. Pure $TiO_2$ (Zn-$TiO_2$-0) and Zn-doped $TiO_2$ (Zn-$TiO_2$-x, x = 3-10 mol %) samples were synthesized using a novel sol-gel and ammonia-evaporation method. The Zn-doped $TiO_2$ samples showed high photocatalytic activity for the degradation of methylene blue (MB). The physicochemical properties of the samples were investigated using XRD, SEM, ICP, DLS and BET methods. In addition, the most important measurement of photocatalytic ability was investigated by a UV-vis spectrophotometer. The effects of the mol % of zinc ion doping in $TiO_2$ on photocatalytic activity were studied. Among the mol % Zn ions investigated, the Zn-$TiO_2$-9 sample showed the highest photoreactivity. This sample removed 91.4% of the MB after 4 h, while the pure $TiO_2$ only removed 46.4% of the MB.

키워드

참고문헌

  1. Kaneko, M.; Okura, I. Photocatalysis: science and technology: Kadansha and Springer: Japan, 2002.
  2. Chen, S.; Zhao, W.; Liu, W.; Zhang, S. Appl. Sur. Sci. 2008, 255, 2478. https://doi.org/10.1016/j.apsusc.2008.07.115
  3. Zhao, Y.; Li, C.; Liu, X.; Gu, F.; Du, H. L.; Shi, L. Appl. Catal. B: Environ. 2008, 79, 208. https://doi.org/10.1016/j.apcatb.2007.09.044
  4. Yu, H. F.; Zhang, Z. W.; Hu, F. C. J. Alloy Compd. 2008, 465, 484. https://doi.org/10.1016/j.jallcom.2007.10.127
  5. Osterlund, L.; Stengl, V.; Mattsson, A.; Bakardjieva, S.; Andersson, P. O.; Oplustil, F. J. Appl. Catal. B: Environ. 2009, 88, 194. https://doi.org/10.1016/j.apcatb.2008.09.029
  6. Devi, L. G.; Murthy, B. N.; Kumar, S. G. Mater. Sci. Eng. B 2010, 166, 1. https://doi.org/10.1016/j.mseb.2009.09.008
  7. Zhang, Z.; Wang, C. C.; Zakaria, R.; Ying, J. Y. J. Phys. Chem. B 1998, 102, 10871. https://doi.org/10.1021/jp982948+
  8. Choi, W.; Termin, A.; Hoffmann, M. R. J. Phys. Chem. 1994, 98, 13669. https://doi.org/10.1021/j100102a038
  9. Lowell, S.; Shields, J. E. Powder surface area and porosity: Chapman and Hall, London, 1991.
  10. Zhiyong, Y.; Bensimon, M.; Sarria, V.; Stolitchnov, I.; Jardim, W.; Laub, D.; Mielczarski, E.; Mielczarski, J.; Minsker, L. K.; Kiwi, J. Appl. Catal. B: Environ. 2007, 76, 185. https://doi.org/10.1016/j.apcatb.2007.05.025
  11. Li, Y.; Tan, B.; Wu, Y. Chem. Mater. 2007, 20, 567.
  12. Chaudhuri, T. K.; Kothari, A. Journal of Optoelectronic and Biomedical Materials 2009, 1, 20.
  13. Tian, J.; Wang, J.; Dai, J.; Wang, X.; Yin, Y. Surf. Coating Tech. 2009, 204, 723. https://doi.org/10.1016/j.surfcoat.2009.09.028
  14. Liao, S.; Donggen, H.; Yu, D.; Su, Y.; Yuan, G. J. Photochem. Photobiol. Chem. 2004, 168, 7. https://doi.org/10.1016/j.jphotochem.2004.05.010
  15. Chen, Z.; Zhao, G.; Li, H.; Han, G.; Song, B. J. Am. Ceram. Soc. 2009, 92, 1024. https://doi.org/10.1111/j.1551-2916.2009.03047.x

피인용 문헌

  1. Photocatalytic degradation of azo dyes using Zn-doped and undoped TiO2 nanoparticles vol.116, pp.1, 2014, https://doi.org/10.1007/s00339-013-8135-z
  2. Pyrolytic Synthesis of Bifunctional g-C3N4 Derived from Melamine vol.618, pp.1662-7482, 2014, https://doi.org/10.4028/www.scientific.net/AMM.618.215
  3. Degradation of Phenol from Glove Factory’s Effluent by Zn/TiO2 Photocatalyst vol.1113, pp.1662-8985, 2015, https://doi.org/10.4028/www.scientific.net/AMR.1113.528
  4. Nanomaterial; Synthesis and Photocatalytic and Antimicrobial Activity vol.64, pp.1, 2017, https://doi.org/10.1002/jccs.201600735
  5. Synthesis, characterization and application of Cu doped ZnO nanocatalyst for photocatalytic ozonation of textile dye and study of its reusability vol.5, pp.11, 2018, https://doi.org/10.1088/2053-1591/aadcdf
  6. Synthesis and Characterization of Various Doped TiO2 Nanocrystals for Dye-Sensitized Solar Cells vol.6, pp.5, 2012, https://doi.org/10.1021/acsomega.0c01614
  7. Zn-doped TiO2 nanoparticles for glutamate sensors vol.47, pp.15, 2012, https://doi.org/10.1016/j.ceramint.2021.04.113