DOI QR코드

DOI QR Code

Synthesis and Crystal Structure of Blue Phosphorescent mer-Tris(2',6'-difluoro-2,3'-bipyridinato-N,C4') Iridium(III)

  • Jung, Na-Rae (Division of Science Education & Department of Chemistry, Kangwon National University) ;
  • Lee, Eun-Ji (Division of Science Education & Department of Chemistry, Kangwon National University) ;
  • Kim, Jin-Ho (Division of Science Education & Department of Chemistry, Kangwon National University) ;
  • Park, Hyoung-Keun (Division of Science Education & Department of Chemistry, Kangwon National University) ;
  • Park, Ki-Min (Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University) ;
  • Kang, Young-Jin (Division of Science Education & Department of Chemistry, Kangwon National University)
  • 투고 : 2011.11.10
  • 심사 : 2011.11.18
  • 발행 : 2012.01.20

초록

A blue phosphorescent $Ir(dfpypy)_3$ (dfpypy:fluorinated pyridine-pyridine ligand) complex with meridional configuration has been synthesized by newly developed effective method and its solid state structure and photoluminescence are characterized. For this complex, mer-$Ir(dfpypy)_3$, the glass-transition and decomposition temperatures appear at $160^{\circ}C$ and $384^{\circ}C$ respectively in TGA and DSC experiments, which indicates that this complex has high thermal stability. In a crystalline structure, an average Ir-C bond length of mer-$Ir(dfpypy)_3$ is slightly longer than that of fac-$Ir(dfpypy)_3$, which assumed to be due to the weak trans-influence. The absorption and emission spectra are observed more red-shifted in mer-$Ir(dfpypy)_3$ than fac-$Ir(dfpypy)_3$. In addition, the former is readily oxidized than the latter in electrochemical behavior.

키워드

참고문헌

  1. Chi, Y.; Chou, P.-T. Chem. Soc. Rev. 2010, 39, 638-655 https://doi.org/10.1039/b916237b
  2. Tamayo, A. B.; Alleyne, B. D.; Djurovich, P. I.; Lamansky, S.; Tsyba, I.; Ho, N. N.; Bau, R.; Thompson, M. E. J. Am. Chem. Soc. 2003, 125, 7377-7387. https://doi.org/10.1021/ja034537z
  3. Chew, S.; Lee, C. S.; Lee, S.-T.; Wang, P.; He, J.; Li, W.; Pan, J.; Zhang, X.; Kwong, H. Appl. Phys. Lett. 2006, 88, 093510-093510-3. https://doi.org/10.1063/1.2178468
  4. Lee, J.; Park, K.-M.; Yang, K.; Kang, Y. Inorg. Chem. 2009, 48, 1030-1037. https://doi.org/10.1021/ic801643p
  5. Sajoto, T.; Djurovich, P. I.; Tamayo, A.; Yousufuddin, M.; Bau, R.; Thompson, M. E.; Holmes, R. J.; Forrest, S. R. Inorg. Chem. 2005, 44, 7992-8003. https://doi.org/10.1021/ic051296i
  6. Yeh, Y.-S.; Cheng, Y.-M.; Chou, P.-T.; Lee, G.-H.; Yang, C.-H.; Chi, Y.; Shu, C.-F.; Wang, C.-H. ChemPhysChem. 2006, 7, 2294-2297 https://doi.org/10.1002/cphc.200600461
  7. Ren, X.; Li, J.; Holmes, R. J.; Djurovich, P. I.; Forrest, S. R.; Thompson, M. E. Chem. Mater. 2004, 16, 4743-4747.
  8. Lamansky, S.; Djurovich, P.; Murphy, D.; Abdel-Razzaq, F.; Kwong, R.; Tsyba, I.; Bortz, M.; Mui, B.; Bau, R.; Thompson, M. E. Inorg. Chem. 2001, 40, 1704-1711. https://doi.org/10.1021/ic0008969
  9. Grushin, V. V.; Herron, N.; LeCloux, D. D.; Marshall, W. J.; Petrov, V. A.; Wang, Y. Chem. Commun. 2001, 1494-1495.
  10. Ji, H.; Kim, J.; Yoo, J. W.; Lee, H. S.; Park, K.-M.; Kang, Y. Bull. Korean Chem. Soc. 2010, 31, 1371-1374. https://doi.org/10.5012/bkcs.2010.31.5.1371
  11. Lee, E.; Jung, N.; Kim, H.; Park, K.-M.; Kim, J.; Kang, Y. Bull. Korean Chem. Soc. 2010, 31, 3021-3024. https://doi.org/10.5012/bkcs.2010.31.10.3021
  12. Ko, S.; Choi, H.; Kang, M.-S.; Hwang, H.; Ji, H.; Kim, J.; Ko, J.; Kang, Y. J. Mater. Chem. 2010, 20, 2391-2399. https://doi.org/10.1039/b926163j
  13. Jung, H.; Hwang, H.; Park, K.-M.; Kim, J.; Kim, D.-H.; Kang, Y. Organometallics 2010, 29, 2715-2723. https://doi.org/10.1021/om100222b
  14. Rothmann, M. M.; Fuchs, E.; Schildknecht, C.; Langer, N.; Lennartz, C.; Munster, I.; Strohriegl, P. Org. Electron. 2011, 12, 1192-1197. https://doi.org/10.1016/j.orgel.2011.03.038
  15. Ide, N.; Matsusue, N.; Kobayashi, T.; Naito. H. Thin Solid Films 2006, 509, 164-167. https://doi.org/10.1016/j.tsf.2005.09.141
  16. Hong, H.-W.; Chen, T.-M. Mater. Chem. Phys. 2007, 101, 170- 176. https://doi.org/10.1016/j.matchemphys.2006.03.011
  17. Lee, S. H.; Jang, B.-B.; Tsutsui, T. Macromolecules 2002, 35, 1356-1364. https://doi.org/10.1021/ma010643e
  18. Bruker, SMART and SAINT: Area Detector Control and Integration Software Ver. 5.0; Bruker Analytical X-ray Instruments: Madison, Wisconsin, 1998.
  19. Bruker, SHELXTL: Structure Determination Programs Ver. 5.16; Bruker Analytical X-ray Instruments: Madison, Wisconsin, 1998.

피인용 문헌

  1. A New Class of Sky-Blue-Emitting Ir(III) Phosphors Assembled Using Fluorine-Free Pyridyl Pyrimidine Cyclometalates: Application toward High-Performance Sky-Blue- and White-Emitting OLEDs vol.5, pp.15, 2013, https://doi.org/10.1021/am401694s
  2. Structural characteristics of iridium dual-emitter organometallic compound vol.29, pp.23, 2014, https://doi.org/10.1557/jmr.2014.337
  3. Temperature-dependent nanomorphology–performance relations in binary iridium complex blend films for organic light emitting diodes vol.17, pp.33, 2015, https://doi.org/10.1039/C5CP03436A
  4. Modulation of the Physicochemical Properties of Donor-Spiro-Acceptor Derivatives through Donor Unit Planarisation: Phenylacridine versus Indoloacridine-New Hosts for Green and Blue Phosphorescent Organic Light-Emitting Diodes (PhOLEDs) vol.22, pp.29, 2016, https://doi.org/10.1002/chem.201600652
  5. Blue Phosphorescent Iridium Complexes with Fluorine-free Main Ligands for Efficient Organic Light-emitting Diodes vol.38, pp.8, 2017, https://doi.org/10.1002/bkcs.11177
  6. ) complexes vol.53, pp.5, 2017, https://doi.org/10.1039/C6CC06729H
  7. Homoleptic Iridium(III) Compounds Bearing Bulky Bipyridine Ligand for Potential Application to Organic Light-emitting Diodes vol.39, pp.1, 2018, https://doi.org/10.1002/bkcs.11334
  8. ) complexes for solution processable red-NIR organic light-emitting diodes vol.6, pp.39, 2018, https://doi.org/10.1039/C8TC04321C
  9. Blue Phosphorescent Iridium(III) Compounds with the 2′,6′-Diisopropoxy-2,3′-Bipyridine Ligand vol.39, pp.5, 2018, https://doi.org/10.1002/bkcs.11455
  10. Blue-emitting Ir(III) phosphors with 2-pyridyl triazolate chromophores and fabrication of sky blue- and white-emitting OLEDs vol.1, pp.15, 2012, https://doi.org/10.1039/c3tc00919j
  11. Mechanoluminescent and efficient white OLEDs for Pt(II) phosphors bearing spatially encumbered pyridinyl pyrazolate chelates vol.1, pp.45, 2012, https://doi.org/10.1039/c3tc31524j
  12. Fluorine-free blue-green emitters for light-emitting electrochemical cells vol.2, pp.29, 2012, https://doi.org/10.1039/c4tc00542b
  13. Fluorine-free blue phosphorescent emitters for efficient phosphorescent organic light emitting diodes vol.2, pp.30, 2014, https://doi.org/10.1039/c4tc00715h
  14. Electrochemical synthesis, characterization of Ir–Zn containing coordination polymer, and application in oxygen and glucose sensing vol.43, pp.17, 2012, https://doi.org/10.1039/c3dt53504e
  15. Heteroleptic Phosphorescent Iridium(III) Compound with Blue Emission for Potential Application to Organic Light-Emitting Diodes vol.35, pp.12, 2012, https://doi.org/10.5012/bkcs.2014.35.12.3590
  16. Blue Phosphorescent Platinum Complexes Based on Tetradentate Bipyridine Ligands and Their Application to Organic Light-Emitting Diodes (OLEDs) vol.37, pp.24, 2012, https://doi.org/10.1021/acs.organomet.8b00659
  17. Ancillary ligand-assisted robust deep-red emission in iridium(iii) complexes for solution-processable phosphorescent OLEDs vol.7, pp.14, 2012, https://doi.org/10.1039/c9tc00805e
  18. Blue Phosphorescent Ir(III) Complexes Achieved with Over 30% External Quantum Efficiency vol.7, pp.24, 2019, https://doi.org/10.1002/adom.201901387
  19. Monodentate Benzo[ d ]imidazole‐Based Iridium(III) Complexes and Their Dual Fluorescent and Phosphorescent Emissions vol.41, pp.2, 2020, https://doi.org/10.1002/bkcs.11949
  20. Aggregation-induced phosphorescence enhancement in deep-red and near-infrared emissive iridium(iii) complexes for solution-processable OLEDs vol.8, pp.14, 2020, https://doi.org/10.1039/c9tc06813a