DOI QR코드

DOI QR Code

Electronic and Bonding Properties of BaGaGeH: Hydrogen-induced Metal-insulator Transition from the AlB2-type BaGaGe Precursor

  • Received : 2011.07.27
  • Accepted : 2011.11.15
  • Published : 2012.01.20

Abstract

The hydrogenation of $AlB_2$-type BaGaGe exhibits a metal to insulator (MI) transition, inducing a puckering distortion of the original hexagonal [GaGe] layers. We investigate the electronic structure changes associated with the hydrogen-induced MI transition, using extended H$\ddot{u}$ckel tight-binding band calculations. The results indicate that hydrogen incorporation in the precursor BaGaGe is characterized by an antibonding interaction of $\pi$ on GaGe with hydrogen 1s and the second-order mixing of the singly occupied antibonding $\pi^*$ orbital into it, through Ga-H bond formation. As a result, the fully occupied bonding $\pi$ band in BaGaGe changes to a weakly dispersive band with Ge pz (lone pair) character in the hydride, which becomes located just below the Fermi level. The Ga-Ge bonds within a layered polyanion are slightly weakened by hydrogen incorporation. A rationale for this is given.

Keywords

References

  1. Nagamatsu, J.; Nakagawa, N.; Muranaka, T.; Zenitani, Y.; Akimitsu, J. Nature 2001, 410, 63. https://doi.org/10.1038/35065039
  2. Imai, M.; Abe, E.; Ye, J.; Nishida, K.; Kimura, T.; Honma, K.; Abe, H.; Kitazawa, H. Phys. Rev. Lett. 2001, 87, 077003. https://doi.org/10.1103/PhysRevLett.87.077003
  3. Imai, M.; Nishida, K.; Kimura, T.; Abe, H. Appl. Phys. Lett. 2002, 80, 1019. https://doi.org/10.1063/1.1448857
  4. Imai, M.; Nishida, K.; Kimura, T.; Kitazawa, H.; Abe, H.; Kito, H.; Yosii, K. Physica C 2002, 382, 361. https://doi.org/10.1016/S0921-4534(02)01798-7
  5. Lorenz, B.; Lenzi, J.; Cmaidalka, J.; Meng, R. L.; Sun, Y. Y.; Xue, Y. Y.; Chu, C. W. Physica C 2002, 383, 191. https://doi.org/10.1016/S0921-4534(02)02056-7
  6. Imai, M.; Nishida, K.; Kimura, T.; Abe, H. Physica C 2002, 377, 96. https://doi.org/10.1016/S0921-4534(01)01122-4
  7. An, J. M.; Pickett, W. E. Phys. Rev. Lett. 2001, 86, 4366. https://doi.org/10.1103/PhysRevLett.86.4366
  8. Giantomassi, M.; Boeri, L.; Bachelet, G. B. Phys. Rev. B 2005, 72, 224512. https://doi.org/10.1103/PhysRevB.72.224512
  9. Mazin, I. I.; Papaconstantopoulos, D. A. Phys. Rev. B 2004, 69, 180512(R). https://doi.org/10.1103/PhysRevB.69.180512
  10. Huang, G. Q.; Chen, L. F.; Liu, M.; Xing, D. Y. Phys. Rev. B 2004, 69, 064509. https://doi.org/10.1103/PhysRevB.69.064509
  11. Bjorling, T.; Noreus, D.; Jansson, K.; Andersson, M.; Leonova, E.; Eden, M.; Halenius, U.; Häussermann, U. Angew. Chem., Int. Ed. 2005, 44, 7269. https://doi.org/10.1002/anie.200502090
  12. Hoekstra, A. F. T.; Roy, A. S.; Rosenbaum, T. F.; Griessen, R.; Wijngaarden, R. J.; Koeman, N. J. Phys. Rev. Lett. 2001, 86, 5349. https://doi.org/10.1103/PhysRevLett.86.5349
  13. Whangbo, M.-H.; Hoffmann, R. J. Am. Chem. Soc. 1978, 100, 6093. https://doi.org/10.1021/ja00487a020
  14. Whangbo, M.-H.; Hoffmann, R.; Woodward, R. B. Proc. R. Soc. A 1979, 366, 23. https://doi.org/10.1098/rspa.1979.0037
  15. Ren, J.; Liang, W.; Whang, M.-H. CAESAR Program; PrimeColor Software Inc.: Cary, NC, 1998.
  16. Evans, M. J.; Holland, G. P.; Garcia-Garcia, F. J.; Häussermann, U. J. Am. Chem. Soc. 2008, 130, 12139. https://doi.org/10.1021/ja803664y
  17. Pauling, L. The Nature of the Chemical Bond; Cornell University Press: Ithaca, NY, 1960.
  18. Bjorling, T.; Noreus, D.; Haussermann, U. J. Am. Chem. Soc. 2006, 128, 817. https://doi.org/10.1021/ja054456y
  19. Albright, T. A.; Burdett, J. K.; Whangbo, M.-H. Orbital Interactions in Chemistry; Wiley-Interscience: New York, 1985; Chap. 3.
  20. Zintl, E. Angew. Chem. 1939, 52, 1. https://doi.org/10.1002/ange.19390520102
  21. Kauzlarich, S. M., Ed.; Chemistry, Structure and Bonding of Zintl Phases and Ions; VCH Publishers: New York, 1996

Cited by

  1. Predicted bulk photovoltaic effect in hydrogenated Zintl compounds vol.6, pp.6, 2018, https://doi.org/10.1039/C7TC04091A