DOI QR코드

DOI QR Code

Spectrofluorimetric Determination of Sparfloxacin Using Europium(III) as a Fluorescence Probe in Micellar Medium

  • Kamruzzaman, Mohammad (Department of Chemistry, Kyungpook National University) ;
  • Alam, Al-Mahmnur (Department of Chemistry, Kyungpook National University) ;
  • Lee, Sang-Hak (Department of Chemistry, Kyungpook National University) ;
  • Kim, Young-Ho (Research Institute of Advanced Energy Technology, Kyungpook National University) ;
  • Kim, Sung-Hong (Korea Basic Science Institute Daegu Center) ;
  • Kim, Gyu-Man (School of Mechanical Engineering, Kyungpook National University)
  • Received : 2011.09.01
  • Accepted : 2011.11.06
  • Published : 2012.01.20

Abstract

A europium (III)-sensitized, spectrofluorimetric (FL) method is presented for the determination of sparfloxacin (SPAR) using an anionic surfactant, sodium dodecyl benzene sulphonate (SDBS). The method is based on the strong fluorescence (FL) enhancement of SPAR after the addition of $Eu^{3+}$ ions as fluorescence probes. The experimental results indicated that the FL intensity of the SPAR-$Eu^{3+}$ system was enhanced markedly by SDBS. The maximum FL emission signal was obtained at about 615 nm when excited at 372 nm. The experimental conditions that affected the FL intensity of the SPAR-$Eu^{3+}$-SDBS system were optimized systematically. The enhanced FL intensity of the system exhibited a good linear relationship with the SPAR concentration over the range of $1.5{\times}10^{-9}-1.2{\times}10^{-7}mol\;L^{-1}$ with a correlation coefficient (r) of 0.9987. The limit of detection ($3{\delta}$) was $4.15{\times}10^{-10}mol\;L^{-1}$ with a relative standard deviation (RSD) of 1.65%. This method was successfully applied for the determination of SPAR in pharmaceuticals, and human serum and urine samples with higher sensitivity, wide dynamic range and better stability. The possible interaction mechanism of the system is also discussed in detail by ultraviolet absorption spectra and FL spectra.

Keywords

References

  1. Perronne, C.; Gikas, A.; Truffot-Pernot, C.; Grosset, J.; Vilde, J.- L.; Jean-Jacques Pocidalo, J.-J. Antimicrob. Agents Chemother. 1991, 35, 1356. https://doi.org/10.1128/AAC.35.7.1356
  2. Efthimiadou, E. K.; Sanakis, Y.; Raptopoulou, C. P.; Karaliota, A.; Katsarosa, N.; Psomasa, G. Bioorg. Med. Chem. Lett. 2006, 16, 3864. https://doi.org/10.1016/j.bmcl.2006.04.034
  3. Borner, K.; Borner, E.; Lode, H. J. Chromatogr. 1992, 579, 285. https://doi.org/10.1016/0378-4347(92)80393-5
  4. Argekar, A. P.; Shah, S. J. Anal. Lett. 1999, 32, 1363. https://doi.org/10.1080/00032719908542903
  5. Kudo, M.; Ohkubo, T.; Sugawara, K. J. Liq. Chromatogr. Relat. Technol. 1999, 22, 441.
  6. Marona, H. R. N.; Zuanazzi, J. A. S.; Schapoval, E. E. S. J. Antimicrob. Chemother. 1999, 44, 301. https://doi.org/10.1093/jac/44.2.301
  7. Kamberi, M.; Kamberi, P.; Hajime, N.; Uemura, N.; Nakamura, K.; Nakano, S. Ther. Drug Monit. 1999, 21, 411. https://doi.org/10.1097/00007691-199908000-00005
  8. Mody, V. D.; Pandya, K. K.; Satia, M. C.; Modi, I. A.; Modi, R. I.; Gandhi T. P. J. Pharm. Biomed. Anal. 1998, 16, 1289. https://doi.org/10.1016/S0731-7085(97)00156-8
  9. Feng, Y. L. Anal. Lett. 2001, 34, 2693. https://doi.org/10.1081/AL-100108415
  10. Feng, Y. L.; Dong, C. J. Chromatogr. Sci. 2004, 42, 474. https://doi.org/10.1007/BF02272143
  11. El-Didamony, A. M. Lumines. 2011, 26, 112. https://doi.org/10.1002/bio.1192
  12. Rizk, M.; Belal, F.; Ibrahim, F.; Ahmed, S.; El-Enany, N. Pharm. Acta Helv. 2000, 74, 371. https://doi.org/10.1016/S0031-6865(00)00025-X
  13. Jiang, W.; Ma, Y.; Zhao, W.; Feng, Y.; Wang, N.; Si, Z. Anal. Bioanal. Chem. 2003, 377, 681. https://doi.org/10.1007/s00216-003-2132-6
  14. Zhang, L. W.; Wang, K.; Zhang, X. X. Anal. Chim. Acta 2007, 603, 101. https://doi.org/10.1016/j.aca.2007.09.021
  15. Kumar, K. G.; Augustine, P.; Poduval, R. Pharmazie. 2006, 61, 291.
  16. Marona, H. R. N.; Schapoval, E. E. S. J. Pharm. Biomed. Anal. 2001, 26, 501. https://doi.org/10.1016/S0731-7085(01)00429-0
  17. El-Didamony, A. M. Anal. Lett. 2007, 40, 2708. https://doi.org/10.1080/00032710701588408
  18. Patel, R.; Kumar, B.; Shukla, S. S. Asian J. Chem. 2007, 19, 381.
  19. Al-Ghannam, S. M. Spectrochim. Acta A 2008, 69, 1188. https://doi.org/10.1016/j.saa.2007.06.023
  20. Attia, M. S. Spectrochim. Acta A 2009, 74, 972. https://doi.org/10.1016/j.saa.2009.09.002
  21. Chongqiu, J.; Li, L. Anal. Chim. Acta 2004, 511, 11. https://doi.org/10.1016/j.aca.2004.01.043
  22. Peng, Q.; Hou, F.; Jiang, C. Spectrochim. Acta A 2006, 65, 62. https://doi.org/10.1016/j.saa.2005.09.028
  23. Bian, W.; Zhang, N.; Wang, L. Anal. Sci. 2010, 26, 785. https://doi.org/10.2116/analsci.26.785
  24. Jiang, C.; Luo, L. Anal. Chim. Acta 2004, 506, 171. https://doi.org/10.1016/j.aca.2003.11.013
  25. Liu, R.; Yang, J.; Wu, X. J. Lumines. 2002, 96, 201. https://doi.org/10.1016/S0022-2313(01)00234-4
  26. Tong, C.; Zhu, Y.; Liu, W. Analyst. 2001, 126, 1168. https://doi.org/10.1039/b009577j
  27. Shah, S. S.; Naeem, K.; Shah, S. W. H.; Laghari, G. M. Colloid Surface A 2000, 168, 77. https://doi.org/10.1016/S0927-7757(99)00520-8
  28. Jiang, Z.; Cai, R.; Zhang, H. Analytical Chemistry of Rare Earths, 2nd ed.; Science Publishing: Beijing, 2000; p 21.

Cited by

  1. Highly Sensitive Luminescence Assessment of Bile Acid Using a Balofloxacin-Europium(III) Probe in Micellar Medium vol.33, pp.12, 2012, https://doi.org/10.5012/bkcs.2012.33.12.4145
  2. Study on the Cofluorescence Effect of Europium (III)-Yttrium (III)-Balofloxacin-Sodium Dodecyl Sulfate System and Its Analytical Application vol.48, pp.5, 2012, https://doi.org/10.1080/00387010.2013.879316