초록
오염물질의 이동 현상을 모의하기 위하여, 감쇠항이 있는 3차원 이송-확산 방정식의 수치모형이 개발되었다. 개발된 모형은 유한차분 모형으로서 시간단계의 가중치 ${\alpha}$를 포함하는 음해법(implicit finite difference method)과, 반복법인 Gauss-Seidel SOR(successive over relaxation)이 사용되었다. 모형은 보다 단순화된 가정 하에서 존재하는 두 가지의 해석적인 해와 비교되었다. 그 결과 Peclet number가 5~20 이하에서는 수치 분산의 영향이 크지 않았고 작은 오차범위 내에서 해석적인 해와 동일하였다. 또한 가중치 ${\alpha}$의 변화에 대한 모형의 거동은 Crank-Nicolson 모형(${\alpha}$=0.5)이 fully-implicit 모형(${\alpha}$=1)보다 해석적인 해에 접근함을 보여주었다. 모형의 검증과 실효성 제고를 위하여, mass balance를 검토하였다. 즉, 이송, 확산 및 감쇠항 각각에 대한 질량 이동을 산출하였으며, 그 결과 질량 이동의 계산 오차는 약 3% 이내였다. 본 모형은 감쇠 과정이 수반되는 3차원 이송-확산의 농도분포와 질량이동을 산출할 수 있으며 다양한 경계조건을 설정함으로서 현장조건을 반영할 수 있다. 그러나본 모형은 고정격자를 기반으로하는 유한차분 모형이므로 Peclet number가 비교적 작게 나타날 수 있는 토양 및 지하수계의 오염물질 이동 등의 문제에서 유용하게 적용될 수 있을 것으로 사료된다.
To simulate the transport of pollutant, a numeric model for the advection-diffusion equation with the decay term is developed. This is finite-difference model using the implicit method (with the weight factor ${\alpha}$) and Gauss-Seidel SOR(successive over-relaxation). This model is compared to the analytical solutions (of simpler dimensional or boundary conditions), and in the condition of Peclet number < 5~20, the result shows stable condition, and Crank-Nicolson method (${\alpha}$=0.5) shows the more accurate results than fully-implicit method (${\alpha}$=1). The mass of advection, diffusion and decay is calculated and the error of mass balance is less than 3%. This model can evaluate the 3-D concentrations of the advection-diffusion and decay problems, but this model uses only the finite-difference method with the fixd grid system, so it can be effectively used in the problems with small Peclet numbers like the pollutant transport in groundwater.