DOI QR코드

DOI QR Code

만곡하천의 자갈하상재료 분포에 따른 한계수류력 평가

Estimating Critical Stream Power by the Distribution of Gravel-bed Materials in the Meandering River

  • 신승숙 (강릉원주대학교 방재연구소) ;
  • 박상덕 (강릉원주대학교 토목공학과) ;
  • 이승규 (강릉원주대학교 토목공학과) ;
  • 지민규 (강릉원주대학교 토목공학과)
  • Shin, Seung-Sook (Institute for Disaster Prevention, Gangneung-Wonju National University) ;
  • Park, Sang-Deok (Dept. of Civil Engineering, Gangneung-Wonju National University) ;
  • Lee, Seung-Kyu (Dept. of Civil Engineering, Gangneung-Wonju National University) ;
  • Ji, Min-Gyu (Dept. of Civil Engineering, Gangneung-Wonju National University)
  • 투고 : 2011.06.16
  • 심사 : 2011.11.26
  • 발행 : 2012.02.29

초록

산지하천의 자갈하상재료 분포는 최근 특정규모 홍수의 수류력에 의한 유사 이송 및 퇴적 과정에 의해 형성되며, 장갑화된 하천에서 한계수류력을 평가하는 것은 안정하도설계를 위해 중요하다. 자갈하상 하천 종단지점과 만곡부 일정구간의 세부지점에대한하상재료의입도분포를조사하고, 한계유속 및 한계수류력을 평가하였다. 자갈하상 재료에 대한 Yang의 한계단위수류력과 Bagnold의 한계수류력은 상류로 갈수록 급격히 증가했다. 계획홍수량에 근거한 무차원 전단응력은 Shields 도표에서대부분조사지점의자갈하상재료가소류사형태로이동하는것으로평가되었다. 만곡부에 대한 평균입경은 상류 유입수의 1차 수충지점에서 가장 컸으며, 반사흐름에 의한 2차 수충지점에서 두 번째로 큰 입경을 보였다. 수충직하류지점들에서상대적으로작은평균입경을보였다. 만곡부의 평균한계유속 범위는0.77~2.60m/s의 범위이며, 한계단위수류력은 경사가 급한 1차 수충부에서는 상당히 컸다. 한계수류력의 분포는 7~171W/m2의 범위로 하천 횡단보다는 종단에 따른 변화가 뚜렷했고, 만곡 외측 1차 수충지점과 반사흐름 2차 수충지점에서 크게 작용하는 것으로 평가되었다.

The distribution of gravel-bed materials in mountainous river is formed by the process of deposition and transportation of sediment responding to stream power of the latest flood that is over the certain scale. The particle size of bed material was surveyed in the longitudinal points of river and detail points of a specific meandering section and used to estimate the critical velocity and stream power. Yang's critical unit stream power and Bagnold's critical stream power for gravel-bed materials increased with the distance from downstream to upstream. Dimensionless shear stress based on the designed flood discharge in Shields diagram was evaluated that the gravel-bed materials in most survey points may be transported as form of bedload. The mean diameter in the meandering section was the biggest size in first water impingement point of inflow water from upstream and the second big size in second water impingement point by reflection flow. The mean diameters were relatively the small sizes in points right after water impingement. The range of mean critical velocity was 0.77~2.60 m/s and critical unit stream power was big greatly in first water impingement point. The distribution of critical stream power, range of 7~171 $W/m^2$, was shown that variation in longitudinal section was more obvious than that of cross section and estimated that critical stream power may be affected greatly in first and second water impingement point.

키워드

참고문헌

  1. 건설교통부(2000). 한국 확률 강우강도 작성.
  2. 건설교통부 원주지방국토관리청(2007). 양양남대천수계 유역종합치수계획 보고서.
  3. 박상덕, 신승숙(2011). "산지하천 만곡수충부의 특성과 편수위 저감방안." 한국수자원학회지, 한국수자원학회, 제44권, 제11호, pp. 24-30.
  4. 우효섭(2001). 하천수리학. 청문각.
  5. 장창래, 정관수, 김재한(2004). "혼합사로 구성된 하천에서 하상변동 및 유사의 입도분포 계산을 위한 수치모형 개발." 한국수자원학회논문집, 한국수자원학회, 제37권, 제5호, pp. 387-395. https://doi.org/10.3741/JKWRA.2004.37.5.387
  6. 장창래, 우효섭(2009). "대청댐에서 증가방류에 의한 하상토의 변화 분석." 한국수자원학회논문집, 한국수자원학회, 제42권, 제10호, pp. 845-855. https://doi.org/10.3741/JKWRA.2009.42.10.845
  7. 최흥식, 이승규, 지민규, 김시훈(2011). "산지하천 시험유역(영동.영서)." 한국수자원학회지, 한국수자원학회, 제44권, 제11호, pp. 12-17.
  8. Bagnold, R.A. (1966). An approach to the sediment transport problem form general physics. U.S., Geological Survey Professional Paper, 422-J.
  9. Bagnold, R.A. (1980). "An empirical correlation of bedload transport rates in flumes and natural rivers." Proceedings of the Royal Society of London, A 372, pp. 453-473. https://doi.org/10.1098/rspa.1980.0122
  10. Bagnold, R.A., (1977). "Bedload transport by natural rivers." Water Resources Research, Vol. 13, pp. 303-312. https://doi.org/10.1029/WR013i002p00303
  11. Bravard, J.P. (1991). La dynamique fluviale a l'epreuve des changements environnementaux: quels enseignements applicables a l'amenagement des rivieres? Vol. 7, La Houille Blanche, pp. 515-521.
  12. Brookes, A., (1988). Channelized Rivers: Perspectives for Environmental Management. Wiley, Chichester, p. 326.
  13. Buffington, J.M., and Montgomery, D.R. (1999). "Effects of hydraulic roughness on surface textures of gravelbed rivers." Water Resources Research, Vol. 35, No. 11, pp. 3507-3521. https://doi.org/10.1029/1999WR900138
  14. Costa, J.E. (1983). "Paleohydraulic reconstruction of flashflood peaks from boulder deposits in the Colorado Front range." Geological Society of American Bulletin, Vol. 94, pp. 986-1004. https://doi.org/10.1130/0016-7606(1983)94<986:PROFPF>2.0.CO;2
  15. de Jong, C., and Ergenzinger, P. (1995). Interrelations between mountain valley form and river bed arrangement. (Ed) O. Hickin, River Geomorphology, J. Wiley & Sons, Ch. 4, pp. 55-91.
  16. Deroanne, C. (1995). Dynamique fluviale de la Hoëgne. Evaluation longitudinale des caracteristiques sedimentologiques du lit et des parametres de mobilisation de la charge de fond. Memoire de Licence en Sciences geographiques, Univ. Liege, p. 155.
  17. Ferguson, R.I. (1981). Channel forms and channel changes. In: Lewin, J. (Ed.), British Rivers, G. Allen & Unwin, London, pp. 90-125.
  18. Ferguson, R.I. (2005) "Estimating critical stream power for bedload transport calculations in gravel-bed rivers." Geomorphology, Vol. 70, pp. 33-41. https://doi.org/10.1016/j.geomorph.2005.03.009
  19. Fortier, S., and Scobey, F.C. (1926). "Permissible Canal Velocities." Transactions, ASCE, Vol. 89, No. 1, pp. 940-956.
  20. Gob, F., Petit, G., Bravard, J.-P., Ozer, A., and Gob, A. (2003). "Lichenometric application to historical and subrecent dynamics and sediment transport of a Corsican stream(Figarella River-France)." Quaternary Science Reviews, Vol. 22, pp. 2111-2124. https://doi.org/10.1016/S0277-3791(03)00142-2
  21. Hassan, M.A., and Church, M. (2000). "Experiments on surface structure and partial sediment transport on a gravel bed." Water Resources Research, Vol. 37, No. 7, pp. 1885-1895.
  22. Jacob, N., (2003). Les vallees en gorges de la Cevenne vivaraise, Montagne de sable et chateau d'eau. These de Doctorat, Univ. Paris IV Sorbonne, p. 460.
  23. Jarrett, R.D. (1992). Hydraulics of mountain river, in Yen, B.C. ed., Channel flow resistance-centennial of Manning's formula: International conference for the centennial of Manning's and Kuichling's rational formula, Water Resources Publications, Littleton, Colorado, pp. 287-298.
  24. Mavis, F.T., and Laushey, L.M. (1949). "Formula for velocity at beginning of bed-load movement is reappraised." Civil Engineering, ASCE, Vol. 19, No. 1, pp. 38-39 and 72.
  25. Maynord, S.T. (1993). FlowImpingement, Snake River, Wyoming, Technical Reports, HL-TR-93-9.
  26. Meyer-Peter, E., and Muller, R. (1948). Formulas for bed-load transport. Proc. 3rd Meeting of IAHR, Stockholm, pp. 39-64.
  27. Perpinien, G. (1998). Dynamique fluviale de la Mehaigne: morphometrie, transports en solution et suspension, mobilisation de la charge de fond. Memoire de Licence en Sciences Geographiques, Univ. Liege., p. 128.
  28. Petit, F., Gob, F., Houbrechts, G., and Assani, A.A. (2005). "Critical specific stream power in gravel-bed rivers." Geomorphology, Vol. 69, pp. 92-101. https://doi.org/10.1016/j.geomorph.2004.12.004
  29. Powell, D.M., (1998). "Patterns and processes of sediment sorting in gravel-bed rivers." Progress in Physical Geography, Vol. 22, No. 1, pp. 1-32. https://doi.org/10.1191/030913298675930041
  30. Rice, S.P., and Church, M. (1996). "Sampling fluvial gravels: bootstrapping and the precision of size distribution percentile estimates." Journal of Sedimentary Research, Vol. 66, pp. 654-665. https://doi.org/10.2110/jsr.66.654
  31. Rubey, W.W. (1933). "Setting Velocities of Grave, Sand, and Silt Particles." American Journal of Science, Vol. 25, pp. 325-338. https://doi.org/10.2475/ajs.s5-25.148.325
  32. Shields, I.A. (1936). Anwendung der ahnlichkeitmechanik und der turbulenzforschung auf die gescheibebewegung, Mitt. Preuss. Ver.-Anst., 26, Berlin, Germany.
  33. Talapatra, S.C., and Ghosh, S.N. (1983). "Incipient Motion Criteria for Flow Over a Mobile Bed Sill." Proceedings of the 2nd International Symposium on River Sedimentation, Nanjing, China, pp. 459-471.
  34. Williams, G.P. (1983). "Paleohydrological methods and some examples from Swedish fluvial environments." Geografiska Annaler, Vol. 65A, pp. 227-243.
  35. Wohl, E. (2000). "Mountain Rivers." American Geophysical Union, Water Resources Monograph, Vol. 14, p. 320.
  36. Yang, C.T. (1973). "Incipient Motion and Sediment Transport." J. of the Hydraulics Division, ASCE, Vol. 99, No. 10, pp. 1679-1704.
  37. Yang, C.T. (2003) Sediment transport theory and pratice. Kireper. publishing company Malabar, Florida.
  38. Yeh, K.C., and Kennedy, J.F. (1993). "Moment Model of Nonuniform Channel-Bend Flow. II : Erodible Beds." J. of Hydraulic Engineering, ASCE, Vol. 119, No. 7, pp. 796-815. https://doi.org/10.1061/(ASCE)0733-9429(1993)119:7(796)

피인용 문헌

  1. Estimation of Superelevation in Mountainous River Bends vol.47, pp.12, 2014, https://doi.org/10.3741/JKWRA.2014.47.12.1165