DOI QR코드

DOI QR Code

Lactate Dehydrogenase and Monocarboxylate Transporters 1, 2, and 4 in Tissues of Micropterus salmoides

큰입우럭(Micropterus salmoides) 조직의 젖산탈수소효소 및 Monocarboxylate 수송체(MCT) 1, 2, 4

  • Yum, Jung-Joo (Department of Life Science, Cheongju University) ;
  • Yeon, Jun-Hee (Department of Life Science, Cheongju University)
  • 염정주 (청주대학교 자연과학부 생명과학) ;
  • 연준희 (청주대학교 자연과학부 생명과학)
  • Received : 2011.11.17
  • Accepted : 2011.12.29
  • Published : 2012.01.30

Abstract

The properties of lactate dehydrogenase (EC 1.1.1.27, LDH) and expression of monocarboxylate transporters (MCTs) 1, 2, and 4 were studied in tissues from Micropterus salmoides. Native-PAGE revealed that the LDH $A_4$ isozyme was predominantly located in skeletal muscle. The LDH $A_4$, $A_2B_2$, and $B_4$ isozymes were detected in heart, liver, eye, and brain tissues, while eye-specific $C_4$ isozyme was detected in eye tissue. In September, strong LDH $B_4$ isozyme activity was detected in heart tissue. High $A_4$ isozyme activity was noted in all other tissues except heart tissue. However, in November, strong $A_4$ isozyme activity was detected in heart tissue. The LDH/CS (Citrate synthase, EC 4.1.3.7) ratio in skeletal muscle and heart tissues indicated that anaerobic metabolism was high in those tissues. Native-PAGE after immunoprecipitation showed that eye-specific $C_4$ isozyme was more similar to the $A_4$ than the $B_4$ isozyme. The LDH $A_4$ isozyme was purified by affinity chromatography. The molecular weight of subunit A was 37,200. The LDH activity in tissues was consistently 11.05~28.32% due to inhibition by 10 mM pyruvate. The $K_m^{PYR}$ of LDH in eye tissue was very low. The optimum pH for LDH in tissues was pH 7.5~8.0. The LDH $A_4$ isozyme was detected in mitochondria of skeletal muscle, whereas the $B_4$ and $A_2B_2$ isozymes were detected in heart tissue mitochondria. Western blot analysis indicated that MCTs 1, 2, and 4 were located in the plasma membrane and mitochondria of skeletal muscle and heart tissues. The sizes of MCTs 1, 2, and 4 in skeletal muscle were 60, 54~38, and 63 kDa, while those in heart tissue were 57, 54~38, and 55.5 kDa, respectively. In conclusion, M. salmoides appears to use anaerobic metabolism predominantly when adapted to a hypoxic environment. In highly activated skeletal muscle and heart tissue, energy production is controlled by inward and outward flows of pyruvate and lactate through MCTs 1, 2, and 4 in the plasma membrane and mitochondria, with effective adjustment by LDH isozymes.

큰입우럭(Micropterus salmoides) 조직의 젖산탈수소효소(EC 1.1.1.27, LDH)의 특성 및 골격근과 심장조직의 monocarboxylate 수송체 1, 2, 4의 발현을 연구하였다. Native-PAGE 결과골격근에서 LDH $A_4$, 심장, 간, 눈 및 뇌조직에서 $A_4$, $A_2B_2$, $B_4$, 눈조직에서 eye-specific $C_4$ 동위효소가 발현되었다. 9월에 심장조직에서 LDH $B_4$ 동위효소의 활성이 강하고 다른 조직에서는 $A_4$의 활성이 강했으나, 11월에 심장조직에서 $A_4$ 동위효소의 활성이 강하게 확인되었다. 골격근과 심장조직에서 LDH/CS로 조직의 혐기적 대사 비율이 높게 확인되었으며, 면역 침강 후 native-PAGE에 의해 LDH eye-specific $C_4$ 동위효소가 $B_4$보다 $A_4$ 동위효소에 더 유사한 것으로 확인되었다. LDH $A_4$ 동위효소가 affinity chromatography에 의해 정제되었고, 하부단위체 A의 분자량은 37.200이었다. 피루브산 10 mM에서 조직 LDH의 활성이 11.05-28.32% 남아 저해 정도가 컸고, 눈조직 LDH의 $K_m^{PYR}$이 낮았으며, 조직의 최적 pH는 7.5~8.0이였다. 골격근 미토콘드리아에서 LDH $A_4$ 동위효소, 심장조직의 미토콘드리아에서 $B_4$$A_2B_2$ 동위효소가 확인되었고, 골격근과 심장조직의 원형질막과 미토콘드리아에서 MCT 1, 2, 4가 확인되었다. 골격근 MCT 1, 2, 4 골격근 MCT 1 60 kDa, MCT 2 54~38 kDa, MCT 4 63 kDa, 심장조직 MCT 1 57 kDa, MCT 2 54~38 kDa 및 MCT 4 55.5 kDa이었다. 실험 결과, 큰입우럭이 저산소 조건에 적응되어져 혐기적 대사가 우세하고, 활성이 큰 골격근과 심장조직에서 원형질막과 미토콘드리아 MCT 1, 2, 4를 통해 젖산과 피루브산이 유입되고 유출되며 LDH에 의해 에너지 생성을 효율적으로 조정하는 것으로 사료된다.

Keywords

References

  1. Almeida-Val, I. P. Farias, M. N. Paula-Silva, W. P. Duncan, and A. L. Val. 1995. Biochemical adjustments to hypoxia by Amazon cichlids. Braz. J. Med. Biol. Res. 28, 1257-1263.
  2. Almeida-Val, V. M. F. and A. L. Val. 1993. Evolutionary trends of LDH isozymes in fishes. Comp. Biochem. Physiol. B 105, 21-28. https://doi.org/10.1016/0305-0491(93)90164-Z
  3. Almeida-Val, V. M. F., M. N. Paula-Silva, W. P. Duncan, N. P. Lopes, A. L. Val, and S. Land. 1999. Increase of anaerobic potential during growth of an Amazonian cichlid, Astronotus ocellatus: survivorship and LDH regulation after hypoxia exposure. Biology of Tropical Fishes. INPA, Manaus 437-448.
  4. Baker, S. K., K. J. A. McCullagh, and A. bonen. 1998. Training intensity dependent and tissue specific increases in lactate uptake and MCT 1 in heart and muscle. J. Appl. Physiol. 84, 987-994. https://doi.org/10.1063/1.368165
  5. Baldwin, J., P. S. Lake, and T. W. Moon. 1987. Immunochemical evidence that the single lactate dehydrogenase of lampreys is more similar to LDH $B_4$ than to LDH $A_4$ of hagfish. J. Exp. Zool. 241, 1-8. https://doi.org/10.1002/jez.1402410102
  6. Bonen, A. 2001. Expression of lactate transporters (MCT 1, MCT 4) in heart and muscle. Eur. J. Appl. Physiol. 86, 6-11. https://doi.org/10.1007/s004210100516
  7. Bonen, A., K. J. A. McCullagh, C. T. Putman, E. Hultman, N. L. Jones, and G. J. F. Heigenhauser. 1998. Short-term training increases human muscle MCT 1 and femoral venous lactate in relation to muscle lactate. Am. J. Physiol. Endocrinol. Metab. 274, 102-107.
  8. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein using the principle of protein-dye binding. Anal. Biochem. 72, 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  9. Brooks, G. A. 2009. Cell-cell and intracellular lactate shuttles. J. Physiol. 587, 5591-600. https://doi.org/10.1113/jphysiol.2009.178350
  10. Brooks, G. F. 2000. The sticking and crystallisation of amorphous lactose. Masters thesis, Massey University, Palmerston North, New Zealand.
  11. Buchalter, S. E., M. R. Crain, and R. Kreisberg. 1989. Regulation of lactate metabolism in vivo. Diabetes Metab. Rev. 5, 379-391. https://doi.org/10.1002/dmr.5610050405
  12. Chen, P. S., T. Y. Toribara, and H. Warner. 1956. Microdetermination of phosphorus. Anal. Chem. 28, 1756- 1758. https://doi.org/10.1021/ac60119a033
  13. Chippari-Gomes, A. R., M. A. B. Leitao, M. N. Paula-Silva, L. S. B. Mesquita-saad, and V. M. F. Almeida-Val. 2003. Metabolic adjustments in Satanoperca aff. Jurupari (Perciformes, Cichlidae). J. Genet. Mol. Biol. 26, 27-32.
  14. Cho, S. K., B. Ku, H. An, E. M. Park, S. Y. Park, J. B. Kim and J. J. Yum. 2009. Purification and characterization of lactate dehydrogenase $A_4$ isoenzyme in mandrin fish (Siniperca scherzeri). J. Life Sci. 19, 256-263. https://doi.org/10.5352/JLS.2009.19.2.256
  15. Cho, S. K. 2000. Mitochondrial lactate dehydrogenase in tissues of vertebrate. 88pp., Ph. D. Thesis Cheongju Univ, Korea.
  16. Cho, S. K. and J. J. Yum. 1996. Adaptational phenotype of lactate dehydrogenase isozymes in Pseudogobio esocinus by the environmental variation. J. Ind. Sci. Res., Cheongju Univ., Korea 14, 333-343.
  17. Cho, S. K. and J. J. Yum. 1993. Heterogeneity of lactate dehydrogenase isozymes in tissues of Lampetra japonica. Korean J. Zool. 36, 319-328.
  18. Cho, S. K. and J. J. Yum. 2004. Lactate dehydrogenase isozyme of hypoxia tropical catfish (Pangasius polyuranodon, Hypostomus plecostomus). J. Life Sci. 14, 702-707. https://doi.org/10.5352/JLS.2004.14.4.702
  19. Coonrod, S., A. Vitale, C. Duan, S. Bristol-Gould, J. Herr and E. Goldberg. 2006. Testis-specific lactate dehydrogenase (LDH-C4; Ldh3) in murine oocytes and preimplantation embryos. J. Androl. 27, 502-509. https://doi.org/10.2164/jandrol.05185
  20. Davies, R. and C. D. Moyes. 2007. Allometric scaling in centrarchid fish: origins of intra- and inter-specific variation in oxidative and glycolytic enzyme levels in muscle. J. Exp. Biol. 210, 3798-3804. https://doi.org/10.1242/jeb.003897
  21. Davis, B. J. 1964. Disc electrophoresis-II. Method and application to human serum proteins. Ann. N. Y. Acad. Sci. 121, 404-427. https://doi.org/10.1111/j.1749-6632.1964.tb14213.x
  22. Dawson, D. M., T. L. Goodfriend, and N. O. Kaplan. 1964. Lactic dehydrogenases: functions of the two types rates of synthesis of the two major forms can be correlated with metabolic differentiation. Science 143, 929-933. https://doi.org/10.1126/science.143.3609.929
  23. Dimmer, K. S., B. Friedrich, F. Lang, J. W. Deitmer, and S. Broer. 2000. The low-affinity monocarboxylate trasnporter MCT 4 is adapted to the export of lactate in highly glycolytic cells. J. Biochem. 350, 219-227. https://doi.org/10.1042/0264-6021:3500219
  24. Enerson, B. E. and L. R. Drewes. 2003. Molecular features, regulation and function of monocarboxylate transporters: implications for drug delivery. J. Pharm. Sci. 92, 1531-1544. https://doi.org/10.1002/jps.10389
  25. Enoki, T., Y. Yoshida, H. Hatta, and A. Bonen. 2003. Exercise training alleviates MCT 1 and 4 reductions in heart and skeletal muscles of STZ-induced diabetic rats.J. Appl. Physiol. 94, 2433-2438.
  26. Evertsen, F., J. Medbø, and A. Bonen. 2001. effect of training intensity on muscle lactate transporters and lactate threshold of cross-country skiers. Acta Physiol. Scand. 173, 195-205. https://doi.org/10.1046/j.1365-201X.2001.00871.x
  27. Fantin, V. R. and P. Leder. 2006. Mitochondriotoxic compounds for cancer therapy. Oncogene 25, 4787-4797. https://doi.org/10.1038/sj.onc.1209599
  28. Farrell, A. P. 2007. Tribute to P. L. Lutz: a message from the heart-why hypoxic bradycardia in fishes? J. Exp. Biol. 210, 1715-1725. https://doi.org/10.1242/jeb.02781
  29. Feller, G., J. P. Pauly, A. Smal, P. O'Carra, and C. Gerday. 1991. The lactate dehydrogenase of the icefish heart: biochemical adaptations to hypoxia tolerance. Biochim. Biophys. Acta. 1079, 343-347. https://doi.org/10.1016/0167-4838(91)90079-F
  30. Goldberg, E., E. M. Eddy, C. Duan, and F. Odet. 2010. LDHC : The ultimatetestis-specific gene. J. Androl. 1, 86-94.
  31. Hochachka, P. W. and G. N. Somero. 2002. Biochemical adaptation: mechanism and process in physiological evolution. pp. 480, Oxford University Press, New York.
  32. House, P. D., P. Poulis, and M. J. Weidemann. 1972. Isolation of a plasma-membrane subfraction from rat liver containing an insulin-sensitive cyclic-AMP phosphodiesterase. Eur. J. Biochem. 24, 429-437. https://doi.org/10.1111/j.1432-1033.1972.tb19703.x
  33. Juel, C. and A. P. Halestrap. 1999. Lactate transport in skeletal muscle-role and regulation of monocarboxylate transporter. J. Physiol. 517, 633-642. https://doi.org/10.1111/j.1469-7793.1999.0633s.x
  34. Kim, M. O. and J. J. Yum. 1989. Purification, kinetics and immunochemistry of two homotetrameric lactate dehydrogenase isozymes in Pseudogobio esocinus (Cypriniformes). Korean J. Zool. 32, 420-428.
  35. Kirat, D., K. Sallam, H. Hayashi, T. Miyasho, and S. Kato, 2009. Presence of ten isoforms of monocarboxylate transporter (MCT) family in the bovine adrenal gland. J. Mol. and Cell. Endocrinol. 298, 89-100. https://doi.org/10.1016/j.mce.2008.09.040
  36. Koukourakis, M, I., A. Giatromanolaki, A. L. Harris, and E. Sivridis. 2006. Comparison of metabolic pathways between cancer cells and stromal cells in colorectal carcinomas: a metabolic survival role for tumor-associated stroma. Cancer Res. 66, 632-637. https://doi.org/10.1158/0008-5472.CAN-05-3260
  37. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685. https://doi.org/10.1038/227680a0
  38. McCullagh, K. J. A., R. C. Poole, A. P. Halestrap, M. O'Brien, and A. Bonen. 1996. Role of the lactate transporter (MCT1) in skeletal muscles. J. Physiol. Endocrinol. Metab. 271, 143-150.
  39. Moon, G. H. 2006. Respiratory metabolism and antioxidant activities of tissues in Boleophtalmus pectinitrostris. pp. 87, M.S.Thesis Cheongju Univ., Korea.
  40. Mukai, C and M. Okuno. 2004. Glycolisis plays a major role for adenosine triphosphate supplementation in mouse sperm flagellar movement. Biol. Reprod. 71, 540-547. https://doi.org/10.1095/biolreprod.103.026054
  41. Nelson, D. L. and M. M. Cox. 2008. Principle of Biochemstry, pp. 183-233 5th eds., W. H. Freeman and Company, New York.
  42. Ngan, A. K. and Y. S. Wang. 2009. Tissue-specific transcriptional regulation of monocarboxylate transporters (MCTs) during short-term hypoxia in zebrafish (Danio rerio). Comp. Biochem. Physiol. B 154, 396-405. https://doi.org/10.1016/j.cbpb.2009.08.003
  43. Nikinmaa, M. and B. B. Rees. 2004. Oxygen-dependent gene expression in fishes. Am. J. Physiol. 288, 1079-1090.
  44. O'Carra, P. and S. Barry. 1972. Affinity chromatography of lactate dehydrogenase: model studies demonstrating the potential of the technique in the mechanistic investigation as well as in the purification of multi-substrate enzymes. FEBS Lett. 21, 281-285. https://doi.org/10.1016/0014-5793(72)80183-2
  45. O'Carra, P., S. Barry, and E. Corcoran. 1974. Affinity chromatographic differentiation of lactate dehydrogenas isoenzymes on the basis of differential abortive complex formation. FEBS Lett. 43, 163-168. https://doi.org/10.1016/0014-5793(74)80992-0
  46. Odet, F., S. A. Gabel, J. Williams, R. E. London, E. Goldberg, and E. M. Eddy. 2011. Lactate dehydrogenase C (LDHC) and energy metabolism in mouse sperm. Bio. Reprod. 85, 556-564. https://doi.org/10.1095/biolreprod.111.091546
  47. Park, E. M. and J. J. Yum. 2010. Purification and characterization of lactate dehydrogenase lsozymes in Channa argus. J. Life Sci. 20, 260-268. https://doi.org/10.5352/JLS.2010.20.2.260
  48. Park, E. M. 2010. Expression of lactate dehydrogenase and monocarboxylate transporter (MCT 1, 4) of tissues in Odontobutis interrupta. 76pp, M.S. Thesis Cheongju Univ., Korea.
  49. Park, S. Y. and J. J. Yum. 1997. Purification and characterization of lactate dehydrogenase eye- and testis-specific C4 isozyme. J. Ind. Sci., Cheongju Univ. Korea 15, 263-268.
  50. Poole, R. C., C. E. Sansom, and A. P. Halestrap. 1996. Studies of the membrane topology of the rat erythrocyte $H^+$/lactate cotransporter (MCT 1). J. Biochem. 320, 817-824.
  51. Richards, J. G., Y. S. Wang, C. J. Brauner, R. J. Gonzalez, M. L. Patrick, P. M. Schulte, A. R. Choppari-Gomes, V. M. Almeida-Val, and A. L. Val. 2007. Metabolic and ionoregulatory responses of the amazonian cichlid, Astronotus ocellatus, to severe hypoxia. J. Comp. Physiol. B. 177, 361-374. https://doi.org/10.1007/s00360-006-0135-2
  52. Roermund, C. W. V., Y. Elgersma, N. Singh, R. J. Wanders, and H. F. Tabak. 1995. The membrane of peroxisomes in Saccharomyces cerevisiae is impermeable to NAD(H) and acetyl- CoA under in vivo conditions. EMBO J. 14, 3480-3486.
  53. Scanlan, M. J., A. J. Simpson, and L. J. Old. 2004. The cancer/ testis genes: Review, standardization, and commentary. Cancer Immun. 23, 1-15.
  54. Sensabaugh, G. F. and N. O. Kaplan. 1972. A lactate dehydrogenase specific to the liver of gadoid fish. J. Biol. Chem. 247, 585-593.
  55. Sepponen, K., N. Koho, E. Puolanne, M. Ruusunen, and A. R. Poso. 2003. Distribution of monocarboxylate transporter isoforms MCT 1, MCT 2 and MCT 4 in porcine muscles. Acta Physiol. Scand. 177, 79-86. https://doi.org/10.1046/j.1365-201X.2003.01051.x
  56. Sidell, B. D. and K. F. Beland. 1980. Lactate dehydrogenases of atlantic hagfish: Physiological and evolutionary implications of a primitive heart isozyme. Science 207, 769-770. https://doi.org/10.1126/science.7352286
  57. Srere, P. A., H. Brazil, and L. Gonen. 1963. Citrate condencing enzyme of pigeon breast muscle and moth flight muscle. Acta Chem. Scand. 17, 129-134. https://doi.org/10.3891/acta.chem.scand.17s-0129
  58. Suzuki, A., S. A. Stern, O. Bozdagi, G. W. Huntley, R. H. Walker, P. J. Magistretti and C. M. Alberini. 2011. Astrocyte-neuron lactate transport is required for long-term memory formation. Cell 144, 810-823. https://doi.org/10.1016/j.cell.2011.02.018
  59. Tabor, C. W., H. Tabor and S. M. Rosenthal. 1954. Purification of amine oxidase from beef plasma. J. Biol. Chem. 208, 645-661.
  60. Tylicki, A., D. Masztaleruk, and S. Strumilo. 2006. Differences in some properties of lactate dehydrogenase from muscles of the carp Cyprinus carpio and trout Salmo gairdneri. Comp. Onto. Biochem. 42, 143-147.
  61. Wang, X., E. Perez, R. Liu, L. J. Yan, R. T. Mallet, and S. H. Yang. 2007. Pyruvate protects mitochondria from oxidative stress in human neuroblastoma SK-N-SH cells. Proc. Natl. Acad. Sci. USA 97, 2886-2891. https://doi.org/10.1073/pnas.040461197
  62. Wang, Y., P. M. Wright, G. J. Heigenhauser, and C. M. Wood. 1997. Lactate transport by rainbow trout white muscle: kinetic characteristics and sensitivity to inhibitors. Am. J. Physiol. 272, 1577-1587.
  63. Whitt, G. S. 1970. Developmental genetics of the lactate dehydrogenase isoenzymes of fish. J. Exp. Zool. 175, 1-35. https://doi.org/10.1002/jez.1401750102
  64. Wilson, M. C., V. N. Jackson, C. Hedle, N. T. Price, H. Pilegaard, and C. Juel. 1998. Lactic acid efflux from white skeletal muscle is catalyzed by the monocarboxylate transporter MCT 3. J. Biol. Chem. 273, 15920-15926. https://doi.org/10.1074/jbc.273.26.15920
  65. Yeon, J. H. 2011. Charaterization of lactate dehydrogenase and expression of monocarboxylate transporters (MCT) 1, 2, 4 in liver from Carassius auratus. pp. 87, M. S. Thesis Cheongju Univ., Korea.
  66. Yum, J. J. 2008. Characterization of lactate dehydrogenase in Acanthogobius hasta. J. Life Sci. 18, 264-272. https://doi.org/10.5352/JLS.2008.18.2.264
  67. Zoll, J., E. Ponsot, S. Dufour, S. Doutreleau, R. Ventura Clapier, M. Vogt, H. Hoppeler, R. Richard, and M. Fluck. 2006. Exercise training in normobaric hypoxia in endurance runners. III. Muscular adjustments of selected gene transcripts. J. Appl. Physiol. 100, 1258-1266. https://doi.org/10.1152/japplphysiol.00359.2005

Cited by

  1. Kinetic Properties of Lactate Dehydrogenase in Tissues from Rana catesbeiana vol.24, pp.2, 2014, https://doi.org/10.5352/JLS.2014.24.2.118