References
- Adams, D. O. and S. F. Yang. 1979. Ethylene biosynthesis: identification of 1-aminocyclopropane-1-carboxylic acid as an intermediate in the conversion of methionine to ethylene. Proc. Natl. Acad. Sci. USA 76, 170-174. https://doi.org/10.1073/pnas.76.1.170
- Chandok, M. R. and S. K. Sopory. 1998. ZmcPKC70, a protein kinase C-type enzyme from maize. J. Biol. Chem. 273, 19235-19242. https://doi.org/10.1074/jbc.273.30.19235
- Cote, G. G. 1995. Signal transduction in leaf movement. Plant Physiol. 109, 729-734.
- Geisler, M. and A. S. Murphy. 2006. The ABC of auxin transport: The role of p-glycoproteins in plant development FEBS Letter 580, 1094-1102. https://doi.org/10.1016/j.febslet.2005.11.054
- Hardin, S. C. and S. M. Wolniak. 2001. Expression of the mitogen-activated protein kinase kinase ZmMEK1 in the primary roots of maize. Planta 213, 916-926. https://doi.org/10.1007/s004250100564
- Huang, F., M. K. Zago, L. Abas, A. Marion, S. Galvan-Ampudia, and R. Offringa. 2010. Phosphorylation of conserved PIN motifs directs Arabidopsis PIN1 polarity and auxin transport. Plant Cell 22, 1129-1142. https://doi.org/10.1105/tpc.109.072678
- Joo, J. H., H. J. Yoo, I. Hwang, J. S. Lee, K. H. Nam, and Y. S. Bae. 2005. Auxin-induced reactive oxygen species production requires the activation of phosphatidylinositol 3-kinase. FEBS letters 579, 1243-1248. https://doi.org/10.1016/j.febslet.2005.01.018
- Kende, H. 1993. Ethylene biosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 44, 283-307. https://doi.org/10.1146/annurev.pp.44.060193.001435
- Kim, S. Y. and T. J. Mulkey. 1997. Effect of ethylene antagonists on auxin -induced inhibition of intact primary root elongation in maize (Zea mays L.). J. Plant Biol. 40, 256-260. https://doi.org/10.1007/BF03030457
-
Monshausen, G. B., N. D. Miller, A. S. Murphy, and S. Gilroy. 2011. Dynamics of auxin-dependent
$Ca^{2+}$ and pH signaling in root growth revealed by integrating high-resolution imaging with automated computer vision-based analysis. Plant J. 65, 309-318. https://doi.org/10.1111/j.1365-313X.2010.04423.x - Morse, M. J., R. C. Crain, G. G. Cote, and R. L. Satter. 1989. Light-stimulated inositiol phospholipid turnover in Samanea saman pulvini. Plant Physiol. 89, 724-727. https://doi.org/10.1104/pp.89.3.724
- Mulkey, T. J., D. R. Poling, S. Y. Kim, and M. L. Evans. 1988. Effect of aminoethoxyvinyl glycine on root gravitropism in maize. Curr. Topics Plant Bilchem. Physiol. 7, 277.
- Munnik, T., R. F. Irvine, and A. Musgrave. 1998. Phospholipid signaling in plants. Biochem. Biophys. Acta 1389, 222-272. https://doi.org/10.1016/S0005-2760(97)00158-6
- Nishizuka, Y. 1995. Protein kinase C and lipid signaling for sustained cellular responses FASEB 9, 484-496.
- Paponov, I. A., W. D. Teale, M. Trebar, I. Blilou, and K. Palme. 2005. The PIN auxin efflux facilitators: evolutionary and functional perspectives. Trends Plant Sci. 10, 170-177. https://doi.org/10.1016/j.tplants.2005.02.009
- Ruzicka, K., K. Ljung, S. Vanneste, R. Podhorska, T. Beeckman, J. Friml, and E. Benkova. 2007. Ethylene regulates root growth through effect on auxin biosynthesis and transport-dependent auxin distribution. Plant Cell 19, 2197- 2212. https://doi.org/10.1105/tpc.107.052126
- Stepanova, A. N., J. Yun, A. V. Likhacheva, and J. M. Alonso. 2007. Multilevel interactions between ethylene and auxin in Arabidopsis roots. Plant Cell 19, 2169-2185. https://doi.org/10.1105/tpc.107.052068
- Sukumar, P., K. S. Edwards, A. Rachman, A. Delong, and G. K. Muday. 2009. PINOID kinase regulates root gravitropism through modulation of PIN2-dependent basipetal auxin transport in Arabidopsis. Plant Physiol. 150, 722-735. https://doi.org/10.1104/pp.108.131607
- Swarup, R., E. M. Kramer, P. Perry, K. Knox, H. M. O. Leyser, J. Haseloff, G. T. S. Beemster, R. Bhalerao, and M. J. Bennett. 2005. Root gravitropism requires lateral root cap and epidermal cells for transport and response to a mobile auxin signal. Nat. Cell Biol. 7, 1057-1065.
- Szczegielniak, J., A. Liwosz, I. Jurkowski, M. Loog, G. Dobrowolsda, P. Ke, A. C. Harmon, and G. Muszynska. 2000. Calcium-dependent protein kinase from maize seedlings activated by phospholipid. Eur. J. Biochem. 267, 3818- 3827. https://doi.org/10.1046/j.1432-1327.2000.01420.x
- Vandenbussche, F., J. Petrasek, P. Zadnikova, K. Hoyerova, B. Pesek, V. Raz, R. Swarup, M. Bennett, E. Zazimalova, E. Benkova, and Van Der D. Straete. 2010. The auxin influx carreirs AUX1 and LAX3 are involved in auxin-ethylene interactions during apical hook development in Arabidopsis thaliana seedlings. Development 137, 597-606. https://doi.org/10.1242/dev.040790
- Wang, K. L. C., H. Li, and J. R. Ecker. 2002. Ethylene biosynthesis and signaling networks. Plant Cell S131-S151.
- Wang, H. and W. R. Woodson. 1989. Reversible inhibition if ethylene action and interruption of petal senescence in carnation flowers by norbornadiene. Plant Physiol. 89, 434-438 https://doi.org/10.1104/pp.89.2.434
- Woeste, K. E. C., C. Ye, and J. J. Kieber. 1999. Two Arabidopsis mutants that overproduced ethylene are affected in the posttranscriptional regulation of 1-aminocyclopropane- 1-carboxylic acid synthase. Plant Physiol. 119, 521-529. https://doi.org/10.1104/pp.119.2.521
- Yang, S. F. and N. E. Hoffman. 1984. Ethylene biosynthesis and its regulation in higher plants. Ann. Reu. Plant Physiol. 35, 155-189. https://doi.org/10.1146/annurev.pp.35.060184.001103
- Yip, W. K., X. Z. Jiao, and S. F. Yang. 1988. Dependence of in vivo ethylene production rate on 1-aminocyclopropane- 1-carboxylic acid content and oxygen concentration. Plant Physiol. 88, 553.
- Yoo, S. D., Y. Cho, and J. Sheen. 2009. Emerging connections in the ethylene signaling network. Trends Plant Sci. 14, 270-279. https://doi.org/10.1016/j.tplants.2009.02.007
Cited by
- Synthesis and Protective Effect of New Ligustrazine-Benzoic Acid Derivatives against CoCl2-Induced Neurotoxicity in Differentiated PC12 Cells vol.18, pp.10, 2013, https://doi.org/10.3390/molecules181013027