DOI QR코드

DOI QR Code

Optimum Enzyme Mixture of Cellulase, Hemicellulase, and Xylanase for Production of Water-Soluble Carbohydrates from Rice Straw

볏짚 유래 수용성 탄수화물 생산에 있어 cellulase, hemicellulase 및 xylanase 최적혼합조건

  • Cho, Sang-Buem (Department of Animal Science, Chonbuk National University) ;
  • Lee, Sang-Suk (Department of Animal Science and Technology, Sunchon University) ;
  • Kim, Chang-Hyun (Department of Animal Life and Environment Science, Hankyong National University) ;
  • Ryu, Kyeong-Seon (Department of Animal Science, Chonbuk National University) ;
  • Park, Hee-Jun (College of Human Ecology, Chonbuk National University) ;
  • Myong, Hyun (Department of Environmental Landscape Architecture Design, Chonbuk National University) ;
  • Choi, Nag-Jin (Department of Animal Science, Chonbuk National University)
  • 조상범 (전북대학교 동물소재공학과) ;
  • 이상석 (순천대학교 동물자원과학과) ;
  • 김창현 (한경대학교 동물생명환경과학부) ;
  • 류경선 (전북대학교 동물소재공학과) ;
  • 박희준 (전북대학교 생활과학대학) ;
  • 명현 (전북대학교 환경조경디자인학과) ;
  • 최낙진 (전북대학교 동물소재공학과)
  • Received : 2011.11.04
  • Accepted : 2012.01.04
  • Published : 2012.01.30

Abstract

This study was conducted to investigate the production of water-soluble carbohydrates (WSCs) by treatment of different amounts of rice straw with cellulase, hemicellulase, and xylanase. Treatment of high amounts of rice straw (100 g/l) with cellulase and hemicellulase resulted in similar production of WSCs. Reducing the amount of rice straw to 50 g/l decreased the production of WSCs by hemicellulase but had no effect on WSC production by cellulase. The interaction among rice straw amounts, and hemicellulase and xylanase activities was investigated using a Box Behnken design and a response surface model. An interaction was found only between hemicellulase and xylanase. An enzyme mixture consisting of 0.55 mg/ml of hemicellulase and 0.65 mg/ml of xylanase generated the highest amounts of WSCs, regardless of the amount of rice straw provided. Therefore, the activity of cellulase was higher than that of either hemicellulose or xylanase for WSC production from rice straw. The interaction observed for hemicellulase and xylanase indicates that a combined enzyme treatment could improve the production of WSCs from rice straw.

본 실험은 효소들을 이용하여 볏짚으로부터 수용성 탄수화물을 생산할 때 각 효소들의 상호작용을 탐색하기 위하여 수행되었다. 볏짚의 수준에 따른 각 효소들의 수용성 탄수화물 생산 활성을 조사한 결과, 볏짚의 수준이 높을 경우(100 g/l)에는 cellulase와 hemicellulase가 서로 유사한 활성을 나타낸 반면, 볏짚의 수준이 50 g/l로 낮아질 경우, hemicellulase의 활성은 낮아지지만 cellulase는 높은 활성으로 유지되었다. 효소반응액에 포함된 볏짚의 수준, hemicellulase 및 xylanase의 상호작용을 Box Behnken design과 반응표면모형을 이용하여 분석한 결과 hemicellulase과 xylanase 간의 상호작용이 발견되었으며, 각각의 효소들을 0.55 mg/ml와 0.65 mg/ml로 혼합하는 것이 볏짚의 수준과는 상관없이 가장 많은 수용성 탄수화물을 생산하는 결과를 나타내었다. 따라서, 결과적으로 볏짚의 효소처리를 통한 수용성 탄수화물의 생산에 있어 cellulase가 가장 큰 효과를 나타내며, hemicellulase과 xylanase는 서로 상호작용을 통하여 수용성 탄수화물 생성량을 향상시킨다는 알 수 있었다.

Keywords

References

  1. Allen, S. G., D. Schulman, J. Lichwa, M. J. Antal Jr, E. Jennings, and R. Elander. 2001. A comparison of aqueous and dilute-acid single-temperature pretreatment of yellow poplar sawdust. Ind. Eng. Chem. Res. 40, 2352-2361. https://doi.org/10.1021/ie000579+
  2. Bas, D. and I. Boyaci. 2007. Modeling and Optimization I: Usability of response surface methodology. J. Food Eng. 78, 836-845. https://doi.org/10.1016/j.jfoodeng.2005.11.024
  3. Basri, M., R. Rahman, A. Ebrahimpour, A. Salleh, E. Gunawan, and M. Rahman. 2007. Comparison of estimation capabilities of response surface methodology (RSM) with artificial neural network (ANN) in lipase- catalyzed synthesis of palm-based wax ester. BMC Biotechnol. 7, 53. https://doi.org/10.1186/1472-6750-7-53
  4. Chauhan, K., U. Trivedi, and K. C. Patel. 2007. Statistical screening of medium components by Plackett-Burman design for lactic acid production by Lactobacillus sp. KCP01 using date juice. Bioresour. Technol. 98, 98-103. https://doi.org/10.1016/j.biortech.2005.11.017
  5. Chen, C., K. Liu, Y. Lou, and C. Shieh. 2002. Optimisation of kojic acid monolaurate synthesis with lipase PS from Pseudomonas cepacia. J. Sci. Food Agric. 82, 601-605. https://doi.org/10.1002/jsfa.1083
  6. Cho, S. B., W. K. Chang, Y. J. Kim, H. I. Moon, J. W. Joo, K. H. Seo, and S. K. Kim. 2010. Effect of plant oils and minerals for the inhibition of lipase activity of Staphylococcus aureus isolated from fermented pork meat. Korean J. Food Sci. Ani. Resour. 30, 764-772. https://doi.org/10.5851/kosfa.2010.30.5.764
  7. Hideno, A., H. Inoue, K. Tsukahara, S. Yano, X. Fang, T. Endo, and S. Sawayama. 2011. Production and characterizationof cellulases and hemicellulases by Acremonium cellulolyticus using rice straw subjected to various pretreatments as the carbon source. Enzyme Microb. Technol. 48, 162-168. https://doi.org/10.1016/j.enzmictec.2010.10.005
  8. Jeya, M., Y. W. Zhang, I. W. Kim, and J. K. Lee. 2009. Enhanced saccharification of alkali-treated rice straw by cellulase from Trametes hirsuta and statistical optimization of hydrolysis conditions by RSM. Bioresour. Technol. 100, 5155-5161. https://doi.org/10.1016/j.biortech.2009.05.040
  9. Kabel, M. A., G. Bos, J. Zeevalking, A. G. J. Voragen, and H. A. Schols. 2007. Effect of pretreatment severity on xylan solubility and enzymatic breakdown of the remaining cellulose from wheat straw. Bioresour. Technol. 98, 2034-2042. https://doi.org/10.1016/j.biortech.2006.08.006
  10. Lee, M. R. F., R. J. Merry, D. R. Davies, J. M. Moorby, M. O. Humphreys, M. K. Theodorou, J. C. MacRae, and N. D. Scollan. 2003. Effect of increasing availability of water-soluble carbohydrates on in vitro rumen fermentation. Anim. Feed Sci. Technol. 104, 59-70. https://doi.org/10.1016/S0377-8401(02)00319-X
  11. Lee, S. B., S. K. Jung, and J. D. Lee. 2010. Production of rice straw based cellulosic ethanol using acidic saccharification. Appl. Chem. Eng. 21, 349-352.
  12. Ma, H., W. W. Liu, X. Chen, Y. J. Wu, and Z. L. Yu. 2009. Enhanced enzymatic saccharification of rice straw by microwave pretreatment. Bioresour. Technol. 100, 1279-1284. https://doi.org/10.1016/j.biortech.2008.08.045
  13. Nishiyama, Y., J. Sugiyama, H. Chanzy, and P. Langan. 2003. Crystal structure and hydrogen bonding system in cellulose $I{\alpha}$ from synchrotron X-ray and neutron fiber diffraction. J. Am. Chem. Soc. 125, 14300-14306. https://doi.org/10.1021/ja037055w
  14. Poutanen, K., J. Puls, and M. Linko. 1986. The hydrolysis of steamed birchwood hemicellulose by enzymes produced by Trichoderma reesei and Aspergillus awamori. Appl. Microbiol. Biotechnol. 23, 487-490. https://doi.org/10.1007/BF02346065
  15. Qing, Q., B. Yang, and C. E. Wyman. 2010. Xylooligomers are strong inhibitors of cellulose hydrolysis by enzymes. Bioresour. Technol. 101, 9624-9630. https://doi.org/10.1016/j.biortech.2010.06.137
  16. Shinozaki, Y. and H. K. Kitamoto. 2011. Ethanol production from ensiled rice straw and whole-crop silage by the simultaneous enzymatic saccharification and fermentation process. J. Biosci. Bioeng. 111, 320-325. https://doi.org/10.1016/j.jbiosc.2010.11.003
  17. Singh, A., S. Tuteja, N. Singh, and N. R. Bishnoi. 2011. Enhanced saccharification of rice straw and hull by microwave- alkali pretreatment and lignocellulolytic enzyme production. Bioresour. Technol. 102, 1773-1782. https://doi.org/10.1016/j.biortech.2010.08.113
  18. Wada, M., Y. Nishiyama, H. Chanzy, T. Forsyth, and P. Langan. 2008. The structure of celluloses. Powder Diffr. 23, 92-95. https://doi.org/10.1154/1.2912442