DOI QR코드

DOI QR Code

HT-29 대장암세포에서 Akt 활성 저해에 따른 셀레늄의 세포 증식억제 효과

Anti-Proliferative Effects of Selenium in HT-29 Colon Cancer Cells via Inhibition of Akt

  • 박송이 (한남대학교 생명나노과학대학 생명과학과) ;
  • 김인섭 (한남대학교 생명나노과학대학 생명과학과) ;
  • 이세희 (한남대학교 생명나노과학대학 생명과학과) ;
  • 이솔화 (한남대학교 생명나노과학대학 생명과학과) ;
  • 정다운 (한남대학교 생명나노과학대학 생명과학과) ;
  • 박옥진 (한남대학교 생명나노과학대학 식품영양학과) ;
  • 김영민 (한남대학교 생명나노과학대학 생명과학과)
  • Park, Song-Yi (Department of Biological Sciences, College of Life Science and Nano Technology, Hannam University) ;
  • Kim, In-Seop (Department of Biological Sciences, College of Life Science and Nano Technology, Hannam University) ;
  • Lee, Se-Hee (Department of Biological Sciences, College of Life Science and Nano Technology, Hannam University) ;
  • Lee, Sol-Hwa (Department of Biological Sciences, College of Life Science and Nano Technology, Hannam University) ;
  • Jung, Da-Woon (Department of Biological Sciences, College of Life Science and Nano Technology, Hannam University) ;
  • Park, Ock-Jin (Department of Food and Nutrition, College of Life Science and Nano Technology, Hannam University) ;
  • Kim, Young-Min (Department of Biological Sciences, College of Life Science and Nano Technology, Hannam University)
  • 투고 : 2011.10.18
  • 심사 : 2011.12.29
  • 발행 : 2012.01.30

초록

Akt는 세포의 증식과 분화에 관여하며 많은 암종에서 과발현되어 있다는 것이 보고되었다. 본 연구에서는 Akt의 조절을 통한 셀레늄의 HT-29 세포의 세포증식억제 시너지효과를 확인하였다. 셀레늄을 농도별과 시간별로 처리하였을 때 HT-29 세포의 증식이 억제되었고, apoptosis가 일어남을 확인하였다. 셀레늄을 농도별로 처리하여 Western blotting 및 immunofluorescence를 실시한 결과 Akt의 인산화가 저해되었고 COX-2의 발현도 저해되었다. 또한 Akt 저해제인 LY294002를 처리한 결과, HT-29 대장암세포의 증식이 억제되었으며, LY294002를 셀레늄과 병행처리하였을 때 셀레늄에 의한 세포증식억제 효과가 더 강하게 나타나는 것을 확인하였다. Akt siRNA에 의한 Akt의 불활성화는 non-transfected 세포에 비하여 HT-29 세포의 성장을 더 강하게 억제하였으며, Akt가 불활성화 되었을 때 COX-2의 발현 역시 non-transfected 세포에 비하여 감소된 것을 확인하였다. 따라서 HT-29 세포에서 셀레늄의 세포증식억제 효과는 Akt와 COX-2 신호분자의 조절을 통해 일어나며, Akt 의 저해는 셀레늄의 대장암세포증식 억제에 시너지 효과를 나타냄을 확인하였다.

Akt is known to play an important role in cell proliferation and differentiation, and is also over-expressed in several types of cancer cells. In this study, we explored the anti-proliferative effects of selenium in HT-29 colon cancer cells, mediated through effects on Akt and COX-2. Selenium treatments at different concentrations and for different durations inhibited proliferation of HT-29 colon cancer cells and increased apoptotic cell death. Selenium treatment decreased Akt phosphorylation and COX-2 expression. Treatment with LY294002 (an Akt inhibitor) decreased proliferation of HT-29 cells, while a combined treatment with LY294002 and selenium resulted in even further decreases in cell proliferation. Inactivation of Akt by Akt siRNA treatment abolished these inhibitory effects on cell growth. COX-2 expression decreased in Akt transfected cells compared to non-transfected cells. These results suggest that selenium induced both anti-proliferative and apoptotic effects by inhibiting Akt phosphorylation and COX-2 expression. Selenium treatment also appeared to induce synergistic anti-proliferative effects by inhibition of Akt in HT-29 colon cancer cells.

키워드

참고문헌

  1. Bellacosa, A., C. C. Kumar, C. A. Di, and J. R. Testa. 2005. Activation of Akt kinases in cancer implications for therapeutic targeting. Adv. Cancer Res. 94, 29-86. https://doi.org/10.1016/S0065-230X(05)94002-5
  2. Carnero, A. 2010. The PKB/AKT pathway in cancer. Curr. Pharm. Des. 16, 34-44. https://doi.org/10.2174/138161210789941865
  3. Chao, X., J. Zao, G. Xiao-Yi, M. Li-Jun, and S. Tao. 2010. Blocking of PI3K/AKT induces apoptosis by its effect on $NF-{\kappa}B$ activity in gastric carcinoma cell line SGC7901. Biomed. Pharmacother. 64. 600-604. https://doi.org/10.1016/j.biopha.2010.08.008
  4. Clark, L. C., G. F. Jr. Combs, B. W. Turnbull, E. H. Slate, D. K. Chalker, J. Chow, L. S. Davis, R. A. Glover, G. F. Graham, E. G. Gross, A. Krongrad, J. L. Jr. Lesher, H. K. Park, B. B. Jr. Sanders, C. L. Smith, and J. R. Taylor. 1996. Effects of selenium supplementation for cancer prevention in patients with carcinoma of the skin. A randomized controlled trial. Nutritional prevention of cancer trial. JAMA 276, 1957-1963. https://doi.org/10.1001/jama.1996.03540240035027
  5. El-Bayoumy, K. 2001. The protective role of selenium on genetic damage and on cancer. Mutat. Res. 475, 123-139. https://doi.org/10.1016/S0027-5107(01)00075-6
  6. Glynn, S. A., R. L. Prueitt, L. A. Ridnour, B. J. Boersma, T. M. Dorsey, D. A. Wink, J. E. Goodman, H. G. Yfantis, D. H. Lee, and S. Ambs. 2010. COX-2 activation is associated with Akt phosphorylation and poor survival in ER-negative, HER2-positive breast cancer. BMC Cancer 10, 626. https://doi.org/10.1186/1471-2407-10-626
  7. Gopalakrishna, R., Z. H. Chen, and U. Gundimeda. 1997. Seleno-compounds induce a redox modulation of protein kinase C in the cell, compartmentally independent from cytosolic glutathione: its role in inhibition of tumor promotion. Arch. Biochem. Biophys. 348, 37-48. https://doi.org/10.1006/abbi.1997.0335
  8. Han, Y. D., Y. K. Hong, J. G. Kang, Y. J. Choi, and C. H. Park. 2010. Relation of the expression of cyclooxygenase-2 in colorectal adenomas and adenocarcinomas to angiogenesis and prognosis. J. Korean Soc. Coloproctol. 26, 339-346. https://doi.org/10.3393/jksc.2010.26.5.339
  9. Kada, F., M. Saji, and M. D. Ringel. 2004. Akt: a potential target for thyroid cancer therapy. Curr. Drug Targets Immune Endocr. Metabol. Disord. 4, 181-185. https://doi.org/10.2174/1568008043339857
  10. Korkaya, H., A. Paulson, E. Charafe-Jauffret, C. Ginestier, M. Brown, J. Dutcher, S. G. Clouthier, and M. S. Wicha. 2009. Regulation of mammary stem/progenitor cells by PTEN/Akt/beta-catenin signaling. PLoS Biol. 7, e1000121. https://doi.org/10.1371/journal.pbio.1000121
  11. Lee, K. M., M. K. Hwang, D. E. Lee, K. W. Lee, and H. J. Lee. 2010. Protective effect of quercetin against arsenite-induced COX-2 expression by targeting PI3K in rat liver epithelial cells. J. Agric. Food Chem. 58, 5815-5820. https://doi.org/10.1021/jf903698s
  12. Lee, S. H., S. Y. Park, I. S. Kim, O. J. Park, and Y. M. Kim 2010. The effect of combind treatment of selenium and curcumin on Akt and mTOR regulation in Hep3B hepato- carcinoma cells. Cancer Prev. Res. 15. 285-290.
  13. Lee, Y. K., S. Y. Park, Y. M. Kim, and O. J. Park. 2009. Regulatory effect of the AMPK-COX-2 signaling pathway in curcumin-induced apoptosis in HT-29 colon cancer cells. Ann. N. Y. Acad. Sci. 1171, 489-494. https://doi.org/10.1111/j.1749-6632.2009.04699.x
  14. Lee, Y. K., S. Y. Park, Y. M. Kim, D. C. Kim, W. S. Lee, Y. J. Surh, and O. J. Park. 2010. Suppression of mTOR via Akt-dependent and -independent mechanisms in selenium- treated colon cancer cells: involvement of AMPKalpha1. Carcinogenesis 31, 1092-1099. https://doi.org/10.1093/carcin/bgq040
  15. Li, X. Y., X. R. Zhan, X. M. Liu, and X. C. Wang. 2011. CREB is a regulatory target for the protein kinase Akt/PKB in the differentiation of pancreatic ductal cells into islet $\beta$-cells mediated by hepatocyte growth factor. Biochem. Biophys. Res. Commun. 404, 711-716. https://doi.org/10.1016/j.bbrc.2010.12.048
  16. Li, Y. B., J. Y. Han, W. Jiang, and J. Wang. 2011. Selenium inhibits high glucose-induced cyclooxygenase-2 and P-selectin expression in vascular endothelial cells. Mol. Biol. Rep. 38, 2301-2306. https://doi.org/10.1007/s11033-010-0362-1
  17. Osaki, M., M. Oshimura, and H. Ito 2004. PI3K/Akt pathway: its functions and alterations in human cancer. Apoptosis 9, 667-676. https://doi.org/10.1023/B:APPT.0000045801.15585.dd
  18. Rotruck, J. T., A. L. Pope, H. E. Ganther, A. B. Swanson, D. G. Hafeman, and W. G. 1973. Hoekstra. Selenium: biochemical role as a component of glutathione peroxidase. Science 179, 588-90. https://doi.org/10.1126/science.179.4073.588
  19. Rotruck, J. T., W. G. Hoekstra, H. E. Ganther, and A. L. Pope. 1972. Prevention of oxidative damage to rat erythrocytes by dietary selenium. J. Nutr. 120, 689.
  20. Rudolf, E., V. Kralova, and M. Cervinka. 2008. Selenium and colon cancer--from chemoprevention to new treatment modality. Anticancer Agents Med. Chem. 8. 598-602. https://doi.org/10.2174/187152008785133047
  21. Sinha, R., S. C. Kiley, J. X. Lu, H. J. Thompson, R. Moraes, S. Jaken, and D. Medina. 1999. Effects of methylselenocysteine on PKC activity, cdk2 phosphorylation and gadd gene expression in synchronized mouse mammary epithelial tumor cells. Cancer Lett. 146, 135-145. https://doi.org/10.1016/S0304-3835(99)00250-5
  22. Tang, C. H., R. S. Yang, T. H. Huang, D. Y. Lu, W. J. Chuang, T. F. Huang, and W. M. Fu. 2006. Ultrasound stimulates cyclooxygenase-2 expression and increases bone formation through integrin, focal adhesion kinase, phosphatidylinositol 3-kinase, and Akt pathway in osteoblasts. Mol. Pharmacol. 69, 2047-2057. https://doi.org/10.1124/mol.105.022160
  23. Yamauchi, T., M. Watanabe, T. Kubota, H. Hasegawa, Y. Ishii, T. Endo, Y. Kabeshima, K. Yorozuya, K. Yamamoto M. Mukai, and M. Kitajima. 2002. Cyclooxygenase-2 expression as a new marker for patients with colorectal cancer. Dis. Colon Rectum. 45, 98-103. https://doi.org/10.1007/s10350-004-6120-5

피인용 문헌

  1. Resveratrol Induces Apoptosis through PI3K/Akt and p53 Signal Pathway in MDA-MB-231 Breast Cancer Cells vol.44, pp.4, 2012, https://doi.org/10.9721/KJFST.2012.44.4.452
  2. Apoptotic effects of extract from Cnidium monnieri (L.) Cusson by adenosine monosphosphate-activated protein kinase-independent pathway in HCT116 colon cancer cells vol.13, pp.6, 2016, https://doi.org/10.3892/mmr.2016.5115
  3. Induction of Apoptosis by Hwangheuk-san in AGS Human Gastric Carcinoma Cells through the Generation of Reactive Oxygen Species and Activation of Caspases vol.25, pp.11, 2015, https://doi.org/10.5352/JLS.2015.25.11.1235
  4. Apoptotic Effects and Cell Cycle Arrest Effects of Extracts from Cnidium monnieri (L.) Cusson through Regulating Akt/mTOR/GSK-3β Signaling Pathways in HCT116 Colon Cancer Cells vol.26, pp.6, 2016, https://doi.org/10.5352/JLS.2016.26.6.663