DOI QR코드

DOI QR Code

한우 등심조직 내 succinate dehydrogenase 및 triosephosphate isomerase 발현이 근내 지방함량에 미치는 영향에 관한 연구

Association of Succinate Dehydrogenase and Triose Phosphate Isomerase Gene Expression with Intramuscular Fat Content in Loin Muscle of Korean (Hanwoo) Cattle

  • 투고 : 2011.08.12
  • 심사 : 2011.12.13
  • 발행 : 2012.01.30

초록

비육 전(12개월령) 후(27개월령)기 한우 등심육을 대상으로 단백체 연구를 통하여 succinate dehydrogenase (SDH) 및 triosephosphate isomerase (TPI) 단백질의 발현 차이가 관찰되었다. 따라서 본 연구는 근내지방함량의 차이를 보이는 비육 전 후기 한우 등심육 내 차등발현을 보이는 SDH 및 TPI 유전자를 대상으로 근내지방함량과의 관련성 규명을 위하여, 비육 전 후기 및 한우 동기우 집단 50두를 대상으로 유전자 발현분석 및 통계분석을 수행하였다. 비육 전 후기 시료를 대상으로 유전자 발현분석을 수행한 결과 SDH 유전자는 12개월령에서 27개월령보다 4배 발현이 높은 것으로 확인되었으며, 한우 동기우 집단 50두 등심육을 대상으로 유전자 발현량과 근내지방함량과의 관련성을 분석한 결과에서도 근내지방함량과 고도의 통계적 유의성(p<0.001)이 있음을 확인하 다. 그러나 TPI의 경우 근내지방함량과의 관련성은 확인되지 않았다. 이러한 결과로 볼 때 SDH 유전자는 한우 등심육 내에서 근내지방함량과 관련된 유전자로 판단되며, 지속적으로 유전자구조 변이연구 등을 통한 유전자 마커로의 개발이 필요할 것으로 생각된다.

In a previous study, succinate dehydrogenase (SDH) and triose phosphate isomerase (TPI) were detected by 2D gel electrophoresis as differentially expressed proteins in the longissimus thoracis muscles of cattle aged between 12 and 27 months old. In the present study, we investigated the association of SDH and TPI gene expression with intramuscular fat content in 50 Hanwoo steers. The SDH gene was expressed at a 4 times higher level in the 12 month old group than in the 27 month old group (p<0.01). A regression analysis between gene expression value and intramuscular fat content showed a negative correlation between expression of the SDH gene and intramuscular fat content (p<0.001). In contrast, the expression of the TPI gene showed no significant association with intramuscular fat content. This result suggests that the SDH gene may be a candidate marker gene for intramuscular fat content in the longissimus thoracis of Korean cattle.

키워드

참고문헌

  1. Canovas, A., J. Estany, M. Tor, R. N. Pena, and O. Doran. 2009. Acetyl-CoA carboxylase and stearoyl-CoA desaturase protein expression in subcutaneous adipose tissue is reduced in pigs selected for decreased backfat thickness at constant intramuscular fat content. J. Anim. Sci. 87, 3905-3914. https://doi.org/10.2527/jas.2009-2091
  2. Casas, E., J. W. Keele, S. D. Shackelford, M. Koohmaraie, and R. T. Stone. 2003. Identification of quantitative trait loci for growth and carcass composition in cattle. Anim. Genet. 35, 2-6. https://doi.org/10.1046/j.1365-2052.2003.01067.x
  3. Childs, K. D., D. W. Goad, M. F. Allan, D. Pomp, C. Krehbiel, R. D. Geisert, J. B. Morgan, and J. R. Malayer. 2002. Differential expression of NAT1 translational repressor during development of bovine intramuscular adipocytes. Physiol. Genomics 10, 49-56.
  4. Folch, J., M. Lees, and G. H. S. Stanley. 1957. A simple method for isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226, 497-508.
  5. Gutierrez-Gil, B., P. Wiener, G. R. Nute, D. Burton, J. L. Gill, J. D. Wood, and J. L. Williams. 2007. Detection of quantitative trait loci for meat quality traits in cattle. Anim. Genet. 39, 51-61. https://doi.org/10.1111/j.1365-2052.2007.01682.x
  6. Habano, W., T. Sugai, S. Nakamura, N. Uesugi, T. Higuchi, M. Terashima, and S. Horiuchi. 2003. Reduced expression and loss of heterozygosity of the SDHD gene in colorectal and gastric cancer. Oncol. Rep. 10, 1375-1380.
  7. Hirwa, C. A., P. Wallace, X. Shen, Q. Nie, G. Yang, and X. Zhang. 2011. Genes related to economically import traits in beef cattle. Asian J. Anim. Sci. 5, 34-45. https://doi.org/10.3923/ajas.2011.34.45
  8. Hollung, K., E. Veiseth, X. Jia, E. M. Færgestad, and K. I. Hildrum. 2007. Application of proteomics to understand the molecular mechanisms behind meat quality. Meat Sci. 77, 97-104. https://doi.org/10.1016/j.meatsci.2007.03.018
  9. Hovenier, R., E. Kanis, T. Van Asseldink, and N. G. Westerink, 1993. Breeding for pig meat quality in halothane negative populations-a review. Pig News Inform. 14, 17N-35N.
  10. Jurie, C., I. Cassar-Malek, M. Bonnet, C. Leroux, D. Bauchart, P. Boulesteix, D. W. Pethick, and J. F. Hocquette. 2007. Adipocyte fatty acid-binding protein and mitochondrial enzyme activities in muscles as relevant indicators of marbling in cattle. J. Anim. Sci. 85, 2660-2669. https://doi.org/10.2527/jas.2006-837
  11. Kalhan, S. C., S. Mahajan, E. Burkett, L. Reshef, and R. W. Hanson. 2001. Glyceroneogenesis and the source of glycerol for hepatic triacylglycerol synthesis in human. J. Biol. Chem. 276, 12928-12931. https://doi.org/10.1074/jbc.M006186200
  12. Kim, N. K., J. H. Lim, M. J. Song, O. H. Kim, B. Y. Park, M. J. Kim, I, H, Hwang, and C. S. Lee. 2007. Developmental proteomic profiling of porcine skeletal muscle during postnatal development. Asian-Aust. J. Anim. Sci. 20, 1612-1617. https://doi.org/10.5713/ajas.2007.1612
  13. Kim, N. K., S. H. Lee, Y. M. Cho, E. S. Son, K. Y. Kim, C. S. Lee, D. Yoon, S. K. Im, S. J. Oh, and E. W. Park. 2009. Proteome analysis of the m. longissimus dorsi between fattening stages in Hanwoo steer. BMB 42, 433-438. https://doi.org/10.5483/BMBRep.2009.42.7.433
  14. Kim, N. K., S. K. Kim, K. N. Heo, D. Yoon, C. S. Lee, S. K. Im, and E. W. Park. 2008. Expression profiles of triacylglycerol biosynthesis genes on fattening stages in Hanwoo. J. Anim. Sci. Technol. 50, 293-300. https://doi.org/10.5187/JAST.2008.50.3.293
  15. Kim, N. K., H. R. Park, E. S. Son, Y. S. Kim, S. R. Kim, and C. S. Lee. 2010. Comparative studies of skeletal muscle proteome and transcriptome profilings between pig breeds. Mamm. Genome 21, 307-319. https://doi.org/10.1007/s00335-010-9264-8
  16. Kim, S. J., K. H. Lee, Y. S. Lee, E. G. Mun, D. Y. Kwon, and Y. S. Cha. 2007. Transcriptome analysis and promoter sequence studies on early adipogenesis in 3T3-L1 cells. Nutr. Res. Prac. 1, 19-28. https://doi.org/10.4162/nrp.2007.1.1.19
  17. Kim, S. K., N. K. Kim, D. Yoon, T. H. Kim, B. K. Yang, and H. J. Lee. 2010. Gene expression of candidate genes involved in fat metabolism during in vitro adipogenic differentiation of bovine mesenchymal stem cell. J. Anim. Sci. Technol. 52, 265-270. https://doi.org/10.5187/JAST.2010.52.4.265
  18. Lai, R. K. and P. Glodman. 1992. Organic acid profiling in adipocyte differentiation of 3T3-F442A cells: increased production of Krebs cycle acid metabolites. Metabolism 41, 545-547. https://doi.org/10.1016/0026-0495(92)90216-W
  19. Laville, E., T. Sayd, C. Terlouw, C. Chambon, M. Damon, C. Larzul, P. Leroy, J. Glenisson, and P. Cherel. 2007. Comparison of sarcoplasmic proteomes between two groups of pig muscles selected for shear force of cooked meat. J. Agric. Food Chem. 55, 5834-5841. https://doi.org/10.1021/jf070462x
  20. Lee, S. H., C. Gondro, J. Werf, N. K. Kim, D. Lim, E. W. Park, S. J. Oh, J. P. Gibson, and J. M. Thompson. 2010. Use of a bovine genome array to identify new biological pathways for beef marbling in Hanwoo (Korean Cattle). BMC Genomics 11, 623. https://doi.org/10.1186/1471-2164-11-623
  21. Lee, S. H., E. W. Park, Y. M. Cho, S. K. Kim, J. H. Lee, J. T. Jeon, C. S. Lee, S. K. Im, S. J. Oh, J. M. Thompson, and D. Yoon. 2007. Identification of differentially expressed genes related to intramuscular fat development in the early and late fattening stages of hanwoo steers. J. Biochem. Mol. Biol. 40, 757-764. https://doi.org/10.5483/BMBRep.2007.40.5.757
  22. Liu, J., M. Damon, N. Guitton, I. Guisle, P. Ecolan, A.Vincent, P. Cherel, and F. Gondret. 2009. Differentially-expressed genes in pig pongissimus muscles with contrasting levels of fat, as identified by combined transcriptomic, reverse transcription PCR, and proteomic analyses. J. Agric. Food Chem. 57, 3808-3817. https://doi.org/10.1021/jf8033144
  23. Nishimura, T., A. Hattori, and K. Takahashi. 1999. Structural changes in intramuscular connective tissue during the fattening of Japanese black cattle: effect of marbling on beef tenderization. J. Anim. Sci. 77, 93-104.
  24. Pethick, D. W., D. N. D`Souza, F. R. Dunshea, and G. S. Harper. 2005. Fat metabolism and regional distribution in ruminants and pig-influences of genetics and nutrition. Rec. Adv. Anim. Nutr. 15, 39-45.
  25. Rajesh, R. V., G. N. Heo, M. R. Park, J. S. Nam, N. K. Kim, D. Yoon, T. H. Kim, and H. J. Lee. 2010. Proteomic analysis of bovine omental, subcutaneous and intramuscular preadipocytes during in vitro adipogenic differentiation. Comp. Biochem. Physiol. D, 5, 234-244.
  26. Scheffler, I. E. 1998. Molecular genetics of succinate: quinine oxidoreductase in eukaryotes. Prog. Nucleic Acid Res. Mol. Biol. 60, 267-315. https://doi.org/10.1016/S0079-6603(08)60895-8
  27. Wang, Y. H., A. Reverter, S. H. Tan, N. D. Jager, R. Eang, S. M. McWilliam, L. M. Cafe, P. L. Greenwood, and S. A. Lehnert. 2008. Gene expression patterns during intramuscular fat development in cattle. J. Ainm. Sci. 87, 119-130. https://doi.org/10.2527/jas.2008-1082
  28. Yu, S. L. and J. H. Lee. 2006. Current research status for economically important candidate genes and microarray studies in cattle. J. Anim. Sci. Technol. 48, 169-190. https://doi.org/10.5187/JAST.2006.48.2.169
  29. Zhu, Z. M., J. B. Zhang, and S. H. Zhao. 2005. Cloning, mapping and association study with carcass traits of the porcine SDHD gene. Anim. Genet. 36, 191-195. https://doi.org/10.1111/j.1365-2052.2005.01270.x

피인용 문헌

  1. Association of Insulin-related Genes Expression with Carcass Weight in Loin Muscle of Korean Cattle (Hanwoo) vol.25, pp.1, 2015, https://doi.org/10.5352/JLS.2015.25.1.8