DOI QR코드

DOI QR Code

Modulation of Adhesion Proteins Integrin β1 and FAK, and Cytoskeletal Protein Actin by Spermine in MCF-7 Cells

MCF-7 세포에서 spermine에 의한 부착단백질 Integrin β1과 FAK, 세포골격 단백질 actin의 조절

  • Jee, Hye-Jin (Department of Biological Sciences, College of Natural Sciences Pusan National University) ;
  • Kim, Byeong-Gee (Department of Biological Sciences, College of Natural Sciences Pusan National University)
  • 지혜진 (부산대학교 자연과학대학 생명과학과) ;
  • 김병기 (부산대학교 자연과학대학 생명과학과)
  • Received : 2011.11.07
  • Accepted : 2011.12.19
  • Published : 2012.01.30

Abstract

Polyamines are essential for cell growth and differentiation; however their precise roles are unclear yet. In the present study, the cytotoxic effect of spermine (spm) on MCF-7 cells was investigated. In the MTT assay of MCF-7 cells treated with spm, cell viability was significantly decreased in a time-and dose-dependent manner. Cell viability measurement was confirmed by trypan blue staining. FACS analysis shows that sub-G1 was increased in a time-and dose-dependent manner too. When the cells were treated with spm, cells started to show morphological changes within 2 hrs. The expression of adhesion proteins (FAK and integrin ${\beta}1$), and cytoskeletal protein (actin) was checked by Western blotting analysis. Integrin ${\beta}1$ levels were slightly decreased, and FAK and actin levels were rapidly decreased with spm treatment. In confocal laser scanning microscopy, the distribution of actin did not change but the expression decreased in a dose-dependent manner with spm treatment. FAK was evenly distributed under the plasma membrane in the untreated control. However, at 10 ${\mu}M$ spm FAK seemed to move toward the cell nucleus. Integrin ${\beta}1$, which was mainly found in the focal point of the plasma membrane in the untreated control, dispersed through the entire plasma membrane in spm treatment. The present results indicate that cytotoxic effects of spm are triggered by the disruption of adhesion proteins and cytoskeletal protein.

Polyamine은 모든 세포의 성장과 분화에 필수적인 요소지만 그 기작은 아직 정확하게 밝혀져 있지 않다. 본 논문에서는 MCF-7세포에서 spm의 세포독성 기작을 연구하였다. MTT assay 결과 저농도의 spm (<10 ${\mu}M$) 처리시 cell viability가 증가하는 반면 고농도의 spm 처리시 처리 시간과 처리 농도에 의존적으로 감소되었으며, 이는 고농도의 spm이 MCF-7 cell에 cytotoxic한 효과를 가지고 있는 것으로 사료된다. Cell cycle 분석 결과 spm 농도에 의존적으로 sub-G1 단계의 세포 양이 증가하는 것으로 나타났으며, 이는 spm이 세포분열을 억제함으로써 세포사를 유발하는 것으로 생각된다. 또한 고농도의 spm 처리 후 2시간이 지나자 cell 표면이 움츠려 들며 rounding되기 시작하여 하루가 지난 후 거의 모든 cell이 culture dish 에서 떨어진 것을 관찰할 수 있었다. 이는 spm이 세포부착에 관여하여 세포사를 유발하는 것이라 생각되며, 세포부착을 조절하는 Integrin ${\beta}1$은 저농도의 spm에선 별다른 차이를 보이지 않다가 농도가 높아질수록 조금씩 감소하였으며, cytoskeletal protein인 actin은 농도의존적으로 감소하였다. 반면 adhesion protein인 FAK는 저농도의 spm 처리시에도 급격히 감소하였다. 이는 spm이 adhesion 및 cytoskeletal proteins의 발현을 억제하는 것으로 보이며, 특히 Integrin ${\beta}1$과 actin에 비해 FAK에 더 많은 영향을 끼치는 것으로 사료된다. 단백질들의 세포막상의 분포에 관한 연구에서, membrane 상에 위치하던 Integrin ${\beta}1$은 10 ${\mu}M$의 spm 처리시 세포 내로 약간의 위치변동이 일어났으나 그 양에는 크게 차이가 없었으며, 반면에 actin은 위치상엔 큰 변화가 일어나지는 않았지만 농도에 따라 크게 감소하는 것으로 나타났다. 세포이동과 형태조절에서 중추적인 역할을 하는 FAK는 세포막 안쪽에 위치하고 있다가 spm 처리시 세포 가운데로 이동하는 모습이 관찰되었으며 그 양도 크게 감소하였다. 이상의 실험에서 세포 내 spm의 변화는 MCF-7 cell의 adhesion protein인 Integrin ${\beta}1$과 FAK, 그리고 cytoskeletal protein인 actin의 발현을 조절하여 cell attachment를 억제함으로써 세포분열과 생장을 억제하는 것으로 분석된다.

Keywords

References

  1. Arancia, G., A. Calcabrini, M. Marra, P. Crateri, M. Artico, A. Martone, F. Martelli, and E. Agostinelli. 2004. Mitochondrial alterations induced by serum amine oxidase and spermine on human multidrug resistant tumor cells. Amino Acids 26, 273-282.
  2. Arancia, G., A. Calcabrini, M. Marra, P. Crateri, M. Artico, A. Martone, F. Martelli, and E. Agostinelli. 2004. Mitochondrial alterations induced by serum amine oxidase and spermine on human multidrug resistant tumor cells. Amino Acids 26, 273-282.
  3. Calderwood, D. A., S. J. Shattil, and M. H. Ginsberg. 2000. Integrins and actin filaments: Reciprocal regulation of cell adhesion and signalling. J. Biol. Chem. 275, 22607-22610. https://doi.org/10.1074/jbc.R900037199
  4. Carragher, N. O. and M. C. Frame. 2004. Focal adhesion and actin dynamics: a place where kinases and proteases meet to promote invasion. Trends Cell Biol. 14, 241-249 https://doi.org/10.1016/j.tcb.2004.03.011
  5. Chen, B. H., J. T. Tzen, A. R. Bresnickand, and H. C. Chen. 2002. Roles of Rho-associated kinase and myosin light chain kinase in morphological and migratory defects of focal adhesion kinase-null cells. J. Biol. Chem. 277, 33857-33863. https://doi.org/10.1074/jbc.M204429200
  6. Crowe, D. L and A. Ohannessian. 2004. Recruitment of focal adhesion kinase and paxillin to $\beta$ 1 integrin promotes cancer cell migration via mitogen activated protein kinase activation. BMC. Cancer 4, 18-23. https://doi.org/10.1186/1471-2407-4-18
  7. Fidler, I. J. 1991. Cancer metastasis. Br. Med. Bull. 47, 157-177.
  8. Frisch, S. M. and E. Ruoslahti. 1997. Integrins and anoikis. Curr. Opin. Cell Biol. 9, 701-706. https://doi.org/10.1016/S0955-0674(97)80124-X
  9. Frisch, S. M. and R. A. Screaton. 2001. Anoikis mechanisms. Curr. Opin. Cell Biol. 13, 555-562. https://doi.org/10.1016/S0955-0674(00)00251-9
  10. Garcia, A. J. and D. Boettiger. 1999. Integrin-fibronectin interactions at the cell-material interface: initial integrin binding and signaling. Biomaterials 20, 2427-2433. https://doi.org/10.1016/S0142-9612(99)00170-2
  11. Giancotti, F. G. and E. Ruoslahti.1999. Integrin signaling. Science 285, 1028-1032. https://doi.org/10.1126/science.285.5430.1028
  12. Han, L. C., C. Jiang, H. Li, W. Zhang, Y. Zhao, L. Zhang, Y. Zhang, W. Zhao, and B. Yang. 2007. Effects of polyamines on apoptosis induced by simulated ischemia/reperfusion injury in cultured neonatal rat cardiomyocytes. Cell Biol. Int. 31, 1345-1352. https://doi.org/10.1016/j.cellbi.2007.05.015
  13. Holst, C. M., B. Frydman, L. J. Marton, and S. M. Oredsson. 2006. Differential polyamine analogue effects in four human breast cancer cell lines. Toxicology 223, 71-81. https://doi.org/10.1016/j.tox.2006.03.009
  14. Jang, E. S. and B. G. Kim. 2008. Mechanism of Apoptosis induced by spemine in MCF-7 breast cancer cells. Korean J. Life Sci. 18, 1177-1185. https://doi.org/10.5352/JLS.2008.18.9.1177
  15. McCormack, S. A., J. Y. Wang, and L. R. Johnson. 1994. Polyamine deficiency causes reorganization of F-actin and tropomyosin in IEC-6 cells. Am. J. Physiol. Cell Physiol. 267, C715-C722.
  16. McLean, G. W., N. O. Carragher, E. Avizienyte, E. J. Evans, V. G. Brunton, and M. C. Frame. 2005. The role of focal adhesion kinase in cancer-a new therapeutic opportunity. Nat. Rev. Cancer 7, 505-515.
  17. Mitra, S. K. and D. D. Schlaepfer. 2006. Integrin-regulated FAK-Src signaling in normal and cancer cells. Curr. Opin. Cell Biol. 18, 516-523. https://doi.org/10.1016/j.ceb.2006.08.011
  18. Pignatti, C., B. Tantini, C. Stefanelli, and F. Flamigni. 2004. Signal transduction pathways linking polyamines to apoptosis. Amino Acids 27, 359-365. https://doi.org/10.1007/s00726-004-0115-3
  19. Ray, R. M., M. J. Viar, A. Shirley, A. McCormack, and L. R. Johnson. 2001. Focal adhesion kinase signaling is decreased in polyamine-depleted IEC-6 cells. Am. J. Physiol. Cell Physiol. 281, C475-478.
  20. Richardson, A., R. K. Malik, J. H. Hildebrand, and J. T. Parsons. 1997. Inhibition of cell spreading by expression of the C-terminal domain of focal adhesion kinase (FAK) is rescued by coexpression of src or catalytically inactive FAK: a role for paxillin tyrosine phosphorylation. Mol. Cell Biol. 17 6906-6914.
  21. Sanders, M. A. and M. D. Basson. 2000. Collagen IV-dependent ERK activation in hμMan Caco-2 intestinal epithelial cells requires focal adhesion kinase. J. Biol. Chem. 2000; 275, 38040-38047. https://doi.org/10.1074/jbc.M003871200
  22. Santos, M. F., M. J. Viar, S. A. McCormack, and L. R. Johnson. 1997. Polyamines are important for attachment of IEC-6 cells to extracellular matrix. Am. J. Physiol. Gastrointest Liver Physiol. 273, G175-G183.
  23. Schlaepfer, D. D., C. R. Hauch, and D. J. Sieg. 1999. Signaling through focal adhesion kinase. Prog. Biophys. Mol. Biol. 71, 435-478. https://doi.org/10.1016/S0079-6107(98)00052-2
  24. Thamilselvan, V. and M. D. Basson. 2004. Pressure activates colon cancer cell adhesion by inside-out focal adhesion complex and actin cytoskeletal signaling. Gastroenterology 126, 8-18. https://doi.org/10.1053/j.gastro.2003.10.078
  25. Thomas, T. and T. J. Thomas. 2001. Polyamines in cell growth and cell death: molecular mechanisms and therapeutic applications. Cell Mol. Life Sci. 58, 244-258. https://doi.org/10.1007/PL00000852
  26. van Golen, C. M., M. E. Soules, A. R. GraμMan, and E. L. Feldman. 2003. N-Myc overexpression leads to decreased β1 integrin expression and increased apoptosis in hum an neuroblastoma cells. Oncogene 22, 2664-2673. https://doi.org/10.1038/sj.onc.1206362
  27. Warry, K. K., A. Mariotti, C. Zurzolo, and F. G. Giancotti. 1998. A requirement for caveolin-1 and associated kinase Fyn in integrin signaling and anchorage-dependent cell growth. Cell 94, 625-634. https://doi.org/10.1016/S0092-8674(00)81604-9