DOI QR코드

DOI QR Code

Thermal Stability of the R Phase of a Rapidly Solidified Ti-47.3Ni (at%) Alloy

  • Moon, Hyo-Jung (Division of Materials Science and Engineering & ERI, Gyeongsang National University) ;
  • Chun, Su-Jin (Division of Materials Science and Engineering & ERI, Gyeongsang National University) ;
  • Nam, Tae-Hyun (Division of Materials Science and Engineering & ERI, Gyeongsang National University) ;
  • Liu, Yinong (School of Materials Science and Engineering, The University of Western Australia) ;
  • Yang, Hong (School of Materials Science and Engineering, The University of Western Australia) ;
  • Kim, Yeon-Wook (Department of Materials Engineering, Keimyung University)
  • 투고 : 2011.11.17
  • 심사 : 2011.11.26
  • 발행 : 2012.02.25

초록

Transformation behavior of rapidly solidified Ti-47.3Ni (at%) alloy ribbons and thermal stability of the R phase in the ribbons were investigated by means of differential scanning calorimetry (DSC), X-ray diffraction, and transmission electron microscopy. Rapidly solidified Ti-47.3Ni alloy ribbons showed the two-stage B2-R-B19' martensitic transformation behavior. The B2-R transformation in the ribbons was observed even after annealing at 1,223 K, which was attributed to the fact that a specific orientation relationship between $Ti_2Ni$ and matrix in the ribbons is maintained after annealing at 1,223 K. The DSC peak temperature of the B2-R transformation ($T_R^*$) decreased with raising annealing temperature, which was attributed to the increased volume fraction of $Ti_2Ni$, thus causing an increased Ni content in the matrix.

키워드

참고문헌

  1. V. N. Khachin, V. E. Gjunter, V. P. Sivokha, A. S. Savvinov, Proceedings of the International Conference on Martensitic Transformations (Boston, MA 1979) p. 474.
  2. S. Miyazaki and K. Otsuka, Metall. Trans. A, 17, 53 (1986) [doi:10.1016/0001-6160(89)90072-2].
  3. M. Nishida and T. Honma, Supplement to J. de Phys. 43, C4-75 (1982).
  4. T. Saburi, T. Tatsumi, and S. Nenno, Supplement to J. de Phys. 43, C4-261 (1982).
  5. S. Miyazaki, Y. Ohmi, K. Otsuka, and Y. Suzuki, Supplement to J. de Phys. 43, C4-255 (1982).
  6. C. M. Hwang, M. Meichle, M. B. Salamon, and C. M. Wayman, Philos. Mag. A 47, 31 (1983) [http://dx.doi.org/10.1080/ 01418618308243107].
  7. T. H. Nam, D. W. Chung, J. S. Kim, and S. B. Kang, Mater. Lett. 52, 234 (2002) [http://dx.doi.org/10.1016/s0167-577x(01) 00424-4].
  8. T. Kurita, H. Matsumoto, K. Sakamoto, K. Tanji, and H. Abe, J. Alloys Compd. 396, 193 (2005) [http://dx.doi.org/10.1016/ j.jallcom.2004.12.032].
  9. T. Goryczka, Mater. Sci. Eng., A 481-482, 676 (2008) [http:// dx.doi.org/10.1016/j.msea.2007.03.116].
  10. T. H. Nam, J. P. Noh, D. W. Jung, Y. W. Kim, H. J. Im, J. S. Ahn, and T. Mitani, J. Mater. Sci. Lett. 21, 11 (2002) [http://dx.doi. org/10.1023/a:1014222007203].
  11. T. Saburi, S. Nenno, Y. Nishimoto, and M. Zeniya, J. Iron Steel Inst. Jpn. 72, 571 (1986). https://doi.org/10.2355/tetsutohagane1955.72.6_571
  12. M. Nishida and C. M. Wayman, Metallography 21, 255 (1988). https://doi.org/10.1016/0026-0800(88)90024-9
  13. T. H. Nam, J. H. Lee, D. W. Jung, C. A. Yu, Y. Liu, and Y. W. Kim, Mater. Sci. Eng., A 448-451, 1041 (2007) [http://dx.doi. org/10.1016/j.msea.2006.02.245].
  14. H. Rosner, A. V. Shelyakov, A. M. Glezer, K. Feit, and P. Schlobmacher, Mater. Sci. Eng., A 273-275, 733 (1999). https://doi.org/10.1016/S0921-5093(99)00406-2
  15. T. H. Nam, J. H. Lee, K. W. Kim, H. J. Ahn, and Y. W. Kim, J. Mater. Sci. 40, 4925 (2005) [http://dx.doi.org/10.1007/s10853-005- 3879-2].
  16. R. Nagarajan and K. Chattopadhyay, Acta Metall. Mater. 42, 947 (1994) [doi:10.1016/0956-7151(94)90289-5].
  17. T. H. Nam, J. H. Kim, M. S. Choi, H. W. Lee, and Y. W. Kim, J. de Phys. 112, 893 (2003) [Doi: 10.1051/jp4:20031025].