DOI QR코드

DOI QR Code

Finite Element Analysis of a Roll Piercing Process Equipped with Diecher's Guiding Discs

원형디스크 지지 방식의 롤피어싱 공정의 유한요소해석

  • Received : 2011.09.01
  • Accepted : 2012.01.06
  • Published : 2012.02.01

Abstract

In this paper, a Mannesmann roll piercing process equipped with Diecher's guiding discs is investigated using a rigid-thermoviscoplastic finite elements method with intelligent remeshing capability and tetrahedral elements. The analysis model is presented and the approach is applied to a Mannesmann roll piercing process found in the literature. Details about the remeshing criterion as well as mesh density control are given. The present predictions are compared with the predictions found in the literature, showing that the two predictions are in close agreement in terms of the deformed shape. However, it is emphasized that the present approach has the distinct strength in predicting details of final shape.

Keywords

References

  1. B. W. Min, W. S. Seo, J. B. Kim, H. J. Lee, S. H. Lee, J. H. Kim, 2011, Prediction of Wrinkling in Micro R2R Forming and its Improvent, Trans. Mater. Process, Vol. 20, No. 1, pp. 42-47. https://doi.org/10.5228/KSTP.2011.20.1.42
  2. A. Ghiotti, S. Fanini, S. Bruschi, P. F. Bariani, 2009, Modelling of the Mannesmann Effect, CIRP Ann. Manuf. Technol., Vol. 58, No. 1, pp. 255-258. https://doi.org/10.1016/j.cirp.2009.03.099
  3. K. Komori, K. Mizuno, 2009, Study on Plastic Deformation in Cone-type Rotary Piercing Process using Model Piercing Mill for Modeling Clay, J. Mater. Process. Technol., Vol. 209, No. 11, pp. 4994-5001. https://doi.org/10.1016/j.jmatprotec.2009.01.022
  4. K. Komori, M. Suzuki, 2005, Simulation of Deformation and Temperature in Press Roll Piercing, J. Mater. Process. Technol., Vol. 169, No. 2, pp. 249-257. https://doi.org/10.1016/j.jmatprotec.2005.03.017
  5. K. Mori, H. Yoshimura, K. Osakada, 1998, Simplified Three-dimensional Simulation of Rotary Piercing of Seamless Pipe by Rigid-plastic Finite-Element Method, J. Mater. Process. Technol., Vol. 80-81, pp. 700-706.
  6. K. Komori, 2005, Simulation of Mannesmann Piercing Process by the Three-dimensional Rigid-Plastic Finite-element Method, Int. J. Mech. Sci., Vol. 47, No. 12, pp. 1838-1853. https://doi.org/10.1016/j.ijmecsci.2005.07.009
  7. Z. Pater, J. Kazanecki, J. Bartnicki, 2006, Three Dimensional Thermo-mechanical Simulation of the Tube Forming Process in Diescher's Mill, J. Mater. Process. Technol., Vol. 177, No. 1-3, pp. 67-170.
  8. S. Chiluveru, 2007, Computational Modeling of Crack Initiation in Crossroll Piercing, Massachusetts Institute of Technology, pp. 1-89.
  9. B. Li, S. H. Zhang, G. L. Zhang, H. Q. Zhang, 2008, Prediction of 3-D Temperature Field of TP2 Copper Tubes in Three-roll Planetary Rolling Process, J. Mater. Process. Technol., Vol. 205, No. 1-3, pp. 370-375. https://doi.org/10.1016/j.jmatprotec.2007.11.213
  10. W. A. Khudheyer, D. C. Barton, T. Z. Blazynski, 1997, A Comparison Between Macroshear Redundancy and Loading Effects in 2-roll and 3-roll Rotary Tube Cone Piercers, J. Mater. Process. Technol., Vol. 65, No. 1-3, pp. 191-202. https://doi.org/10.1016/S0924-0136(96)02261-3
  11. S. Urbanski, J. Kazanecki, 1994, Assessment of the Strain Distribution in the Rotary Piercing Process by the Finite Element Method, J. Mater. Process. Technol., Vol. 45, No. 1-4, pp. 335-340. https://doi.org/10.1016/0924-0136(94)90362-X
  12. K. H. Brensing, Dusseldorf, B. Sommer, S. G. Gmbh, Steel Tube and Pipe Manufacturing Process.
  13. M. S. Joun, M. C. Lee, J. G. Eom, 2011, ASME Conf. Proc.(eds. Y. L. Yao, M. Bement, Z. C. Xia, B. Kinsey, X. Yang), ASME, Corvallis, Oregon, USA, pp. 161-168.

Cited by

  1. Quantitative Study on Mannesmann Effect in Roll Piercing of Hollow Shaft vol.81, 2014, https://doi.org/10.1016/j.proeng.2014.09.150