DOI QR코드

DOI QR Code

Modeling and Forecasting Livestock Feed Resources in India Using Climate Variables

  • Suresh, K.P. (National Institute of Animal Nutrition and Physiology) ;
  • Kiran, G. Ravi (National Institute of Animal Nutrition and Physiology) ;
  • Giridhar, K. (National Institute of Animal Nutrition and Physiology) ;
  • Sampath, K.T. (National Institute of Animal Nutrition and Physiology)
  • 투고 : 2011.08.17
  • 심사 : 2011.12.07
  • 발행 : 2012.04.01

초록

The availability and efficient use of the feed resources in India are the primary drivers to maximize productivity of Indian livestock. Feed security is vital to the livestock management, extent of use, conservation and productivity enhancement. Assessment and forecasting of livestock feed resources are most important for effective planning and policy making. In the present study, 40 years of data on crop production, land use pattern, rainfall, its deviation from normal, area under crop and yield of crop were collected and modeled to forecast the likely production of feed resources for the next 20 years. The higher order auto-regressive (AR) models were used to develop efficient forecasting models. Use of climatic variables (actual rainfall and its deviation from normal) in combination with non-climatic factors like area under each crop, yield of crop, lag period etc., increased the efficiency of forecasting models. From the best fitting models, the current total dry matter (DM) availability in India was estimated to be 510.6 million tonnes (mt) comprising of 47.2 mt from concentrates, 319.6 mt from crop residues and 143.8 mt from greens. The availability of DM from dry fodder, green fodder and concentrates is forecasted at 409.4, 135.6 and 61.2 mt, respectively, for 2030.

키워드

참고문헌

  1. Birthal, P. S. and A. K. Jha. 2005. Economic losses due to various constraints in dairy production in India. Indian J. Anim. Sci. 75:1476-1480.
  2. Box, G. E. P. and G. M. Jenkins. 1976. Time series analysis: Forecasting and control. Oakland, California. Holden-day.
  3. Carter, T. R. and M. L. Parry. 1986. 'Climatic changes and yield variability', (Ed. P. B. R. Hazell). Summary proceedings of a workshop on cereal yield variability, International Food Policy Research Institute, Washington, DC. pp. 47-68.
  4. Challinor, A., T. Wheeler, P. Craufurd and J. Slingo. 2005. Simulation of the impact of high temperature stress on annual crop yields. Agric. Forest Meteorol. 135:180-189. https://doi.org/10.1016/j.agrformet.2005.11.015
  5. DeLurgio, S. and C. Bhame. 1991. Forecasting systems for management. Homewood, IL, Irwin.
  6. Devendra, C. 1997. Crop residues for feeding animals in Asia: technology assessment and adoption. In: Crop Residues in Sustainable Crop Llivestock Farming systems (Ed. C. Renard). Commonwealth Agricultural Bureau, Wallingford, UK. pp. 24-28.
  7. Dikshit, A. K. and P. S. Birthal. 2010. India's livestock feed demand: Estimates and projections. Agricultural Economics Research Review. pp. 23:15-28.
  8. Government of India. 2008. Agricultural statistics at a glance. Ministry of Agriculture, New Delhi.
  9. Government of India. 2009. Year-wise Area under crops, production-All India. http://dacnet.nic.in
  10. Hand Book of Agriculture. 2005. ICAR, Ministry of Agriculture, Government of India, New Delhi.
  11. Hilmersen, A., F. Dolberg and O. Kjus. 1984. Handling and storing. In: Straw and Other Fibrous By-products as Feed (Ed. F. Sundsttel and E. Owen). Elsevier, Amsterdam, The Netherlands, pp. 25-44.
  12. Hollinger, S. E. 1994. Future direction and needs in agricultural meteorology-climatology and modeling. Agric. Forest Meteorol. 69:1-7. https://doi.org/10.1016/0168-1923(94)90075-2
  13. Jain, C. L. 1996. Monthly corporate forecasts Meeting. J. Bus. Forecast. Methods Syst. 15:2-28.
  14. Jain, P. K. and Shivatar Singh. 1990. Quantitative and qualitative insufficiency of livestock feeds by 2001 AD and possibilities of bridging gap. Indian J. Anim. Sci. 60:1224-1229.
  15. Linda, O. Mearns, C. Rosenzweig and Richard Goldberg. 1997. Mean and variance change in climate scenarios: Methods, agricultural applications and Measures of uncertainty. Clim. Change 35:367-396. https://doi.org/10.1023/A:1005358130291
  16. Lobell, D. B. and C. B. Field. 2007. Global scale climate-crop yield relationships and the impacts of recent warming. Environ. Res. Lett. 2:014002. https://doi.org/10.1088/1748-9326/2/1/014002
  17. Misra, A. K. 2005. Contingency planning for feeding and management of livestock during drought. In: Drought Management (Ed. K. D. Sharma and K. S. Ramasastri). Allied Publishers Pvt. Ltd., New Delhi. pp. 276-286.
  18. Misra, A. K., C. V. Rama Rao, K. V. Subrahmanyam, M. Vijay Sankar Babu, B. Shivarudrappa and Y. S. Ramakrishna. 2007. Strategies for livestock development in rainfed agro-ecosystem of India. Livest. Res. Rural Dev. 19:83.
  19. Naresh Kumar, S., P. K. Aggarwal, S. Rani, S. Jain, R. Saxena and N. Chauhan. 2011. Impact of climate change on crop productivity in Western Ghats, coastal and northeastern regions of India. Curr. Sci. 101:1-10.
  20. Owen, E. and A. A. O. Aboud. 1988. Practical problems of feeding crop residues. In: Plant Breeding and the Nutritive Value of Crop Residues Proceedings of an International Workshop, 7-10 December, 1987.
  21. Parry, M. L. and T. R. Carter. 1985. 'The Effect of Climatic variations on Agricultural Risk', Clim. Change 7:95-110. https://doi.org/10.1007/BF00139443
  22. Pedram Rowhani, David B Lobell, Marc Linderman and Navin Ramakutty. 2011. Climate variability and crop production in Tanzania. Agric. Forest Meterol. 151:449-460. https://doi.org/10.1016/j.agrformet.2010.12.002
  23. Pinheiro, J. C. and D. M. Bates. 2000. Mixed effect models in S and S-plus . Springer, Newyork.
  24. Porter, J. R. and M. A. Semenov. 2005. Crop responses to climatic variation. Philos. Trans. R. Soc. Lond. Ser. B: Biol. Sci. 360: 2021-2035. https://doi.org/10.1098/rstb.2005.1752
  25. Ramachandra, K. S., V. K. Taneja, K. T. Sampath, S. Anandan and U. B. Angadi. 2007. Livestock feed resources in different agro-ecosystems of India: Availability, requirement and their management. National Institute of Animal Nutrition and Physiology, Bangalore, India.
  26. SAS. 2009. SAS Institute Inc, Cary, NC, USA.
  27. Singh, H. P., K. D. Sharma, G. S. Reddy and K. L. Sharma. 2004. Dryland agriculture in India. In: Challenges and strategies for dryland agriculture. CSSA Special Publication no. 32. Madison, USA. pp. 67-92.
  28. Singh, K., G. Habib, M. M. Siddiqui and M. N. M. Ibrahim. 1997. Dynamics of feed resources in mixed farming systems of South Asia. In: Crop Residues in Sustainable Mixed Crop/Livestock Farming Systems (Ed. C. Renard). CAB International, Wallingford, UK/ICRISAT (International Crops Research Institute for the Semi-Arid Tropics), Patancheru, India/ILRI (International Livestock Research Institute), Nairobi, Kenya. pp. 113-130.
  29. Srinivas, T. and M. Anantharaman. 2005. Cassava marketing system in India. Technical bulletin, 43. Central tuber crops research institute, Thiruvananthapuram, India.
  30. Wheeler, T., P. Craufurd, R. Ellis, J. Porter and P. Vara Prasad. 2000. Temperature variability and the yield of annual crops. Agric. Ecosyst. Environ. 82:159-167. https://doi.org/10.1016/S0167-8809(00)00224-3
  31. World Bank. 1999. India: Livestock Sector review: Enhancing growth and development. The World Bank and Allied Publishers: New Delhi.
  32. Zuur, A. F., E. N. Ieno, N. Walker, A. A. Saveliev and G. M. Smith. 2009. Mixed effects models and extensions in ecology with R (Statistics for Biology and Health). Springer.

피인용 문헌

  1. Zaman Serisi Analiz Yöntemlerini Kullanarak 2016-2025 Dönemi Türkiye Avokado Üretiminin Belirlenmesi vol.27, pp.2, 2012, https://doi.org/10.29133/yyutbd.306798
  2. India has natural resource capacity to achieve nutrition security, reduce health risks and improve environmental sustainability vol.1, pp.10, 2012, https://doi.org/10.1038/s43016-020-00157-w