DOI QR코드

DOI QR Code

The Role of Intestinal Microflora in Anti-Inflammatory Effect of Baicalin in Mice

  • Jung, Myung-Ah (Department of Food and Nutrition, Kyung Hee University) ;
  • Jang, Se-Eun (Department of Food and Nutrition, Kyung Hee University) ;
  • Hong, Sung-Woon (Life and Nanopharmaceutical Sciences, Kyung Hee University) ;
  • Hana, Myung-Joo (Department of Food and Nutrition, Kyung Hee University) ;
  • Kim, Dong-Hyun (Life and Nanopharmaceutical Sciences, Kyung Hee University)
  • Received : 2011.09.14
  • Accepted : 2011.11.02
  • Published : 2012.01.31

Abstract

Baicalin, a main constituent of the rhizome of Scutellaria baicalensis, is metabolized to baicalein and oroxylin A in the intestine before its absorption. To understand the role of intestinal microflora in the pharmacological activities of baicalin, we investigated its anti-inflammatory effect in mice treated with and without antibiotics. Orally administered baicalin showed the anti-inflammatory effect in mice than intraperitoneally treated one, apart from intraperitoneally administered its metabolites, baicalein and oroxylin A, which potently inhibited LPS-induced inflammation. Of these metabolites, oroxylin A showed more potent anti-inflammatory effect. However, treatment with the mixture of cefadroxil, oxytetracycline and erythromycin (COE) significantly attenuated the anti-inflammatory effect of orally administered baicalin in mice. Treatment with COE also reduced intestinal bacterial fecal ${\beta}$-glucuronidase activity. The metabolic activity of human stools is significantly different between individuals, but neither between ages nor between male and female. Baicalin was metabolized to baicalein and oroxylin A, with metabolic activities of $1.427{\pm}0.818$ and $1.025{\pm}0.603$ pmol/min/mg wet weight, respectively. Baicalin and its metabolites also inhibited the expression of pro-inflammatory cytokines, TNF-${\alpha}$ and IL-$1{\beta}$, and the activation of NF-${\kappa}B$B in LPS-stimulated peritoneal macrophages. Of them, oroxylin A showed the most potent inhibition. Based on these findings, baicalin may be metabolized to baicalein and oroxylin A by intestinal microflora, which enhance its anti-inflammatory effect by inhibiting NF-${\kappa}B$ activation.

Keywords

References

  1. Abe, K., Inoue, O. and Yumioka, E. (1990) Biliary excretion of metabolites of baicalin and baicalein in rats. Chem. Pharm. Bull. (Tokyo). 38, 209-211.
  2. Akao, T., Kida, H., Kanaoka, M., Hattori, M. and Kobashi, K. (1988) Intestinal bacterial hydrolysis is required for the appearance of compound K in rat plasma after oral administration of ginsenoside Rb1 from Panax ginseng. J. Pharm. Pharmacol. 50, 1155-1160.
  3. Akao, T., Kanaoka, M. and Kobashi, K. (1988) Appearance of compound K, a major metabolite of ginsenoside Rb1 by intestinal bacteria, in rat plasma after oral administration--measurement of compound K by enzyme immunoassay. Biol. Pharm. Bull. 21, 245-249.
  4. Akao, T., Sakashita, Y., Hanada, M., Goto, H., Shimada, Y. and Terasawa, K. (2004) Enteric excretion of baicalein, a fl avone of Scutellariae Radix, via glucuronidation in rat: involvement of multidrug resistance-associated protein 2. Pharm. Res. 21, 2120-2126. https://doi.org/10.1023/B:PHAM.0000048205.02478.b5
  5. Akao, T., Kawabata, K., Yanagisawa, E., Ishihara, K., Mizuhara, Y., Wakui, Y., Sakashita, Y. and Kobashi, K. (2000) Baicalin, the predominant fl avone glucuronide of scutellariae radix, is absorbed from the rat gastrointestinal tract as the aglycone and restored to its original form. J. Pharm. Pharmacol. 52, 1563-1568. https://doi.org/10.1211/0022357001777621
  6. Baldwin, A. S. Jr. (2001) Series introduction: the transcription factor NF-${\kappa}B$ and human disease. J. Clin. Invest. 107, 3-6. https://doi.org/10.1172/JCI11891
  7. Chen, Y., Yang, L. and Lee, T. J. (2000) Oroxylin A inhibition of lipopolysaccharide- induced iNOS and COX-2 gene expression via suppression of nuclear factor-${\kappa}B$ activation. Biochem. Pharmacol. 59, 1445-1457. https://doi.org/10.1016/S0006-2952(00)00255-0
  8. Choi, J. R., Hong, S. W., Kim, Y., Jang, S. E., Kim, N. J., Han, M. J. and Kim, D. H. (2011) Metabolic activities of ginseng and its constituents, ginsenoside Rb1 and Rg1, by human intestinal microflora. J. Ginseng. Res. 35, 301-307. https://doi.org/10.5142/jgr.2011.35.3.301
  9. Chou, T. C., Chang, L. P., Li, C. Y., Wong, C. S. and Yang, S. P. (2003) The antiinfl ammatory and analgesic effects of baicalin in carrageenan-evoked thermal hyperalgesia. Anesth. Analg. 97, 1724-1729. https://doi.org/10.1213/01.ANE.0000087066.71572.3F
  10. Collins, T., Read, M. A., Neish, A. S., Whitley, M. Z., Thanos, D. and Maniatis, T. (1995) Transcriptional regulation of endothelial cell adhesion molecules: NF-${\kappa}B$ and cytokine-inducible enhancers. FASEB J. 9, 899-909.
  11. Davis, P. A., Polagruto, J. A., Valacchi, G, Phung, A., Soucek. K., Keen, C. L. and Gershwin, M. E. (2006) Effect of apple extracts on NF-${\kappa}B$ activation in human umbilical vein endothelial cells. Exp. Biol. Med. (Maywood). 231, 594-598.
  12. Fairweather, D. and Rose, N. R. (2005) Inflammatory heart disease: a role for cytokines. Lupus. 14, 646-651. https://doi.org/10.1191/0961203305lu2192oa
  13. Jang, S. I., Kim, H. J., Hwang, K. M., Jekal, S. J., Pae, H. O., Choi, B. M., Yun, Y. G., Kwon, T. O., Chung, H. T. and Kim, Y. C. (2003) Hepatoprotective effect of baicalin, a major fl avone from Scutellaria radix, on acetaminophen-induced liver injury in mice. Immunopharmacol. Immunotoxicol. 25, 585-594. https://doi.org/10.1081/IPH-120026443
  14. Joh, E. H., Lee, I. A., Jung, I. H. and Kim, D. H. (2011) Ginsenoside Rb1 and its metabolite compound K inhibit IRAK-1 activation--the key step of infl ammation. Biochem. Pharmacol. 82, 278-286. https://doi.org/10.1016/j.bcp.2011.05.003
  15. Joh, E. H. and Kim, D. H. (2011) Kalopanaxsaponin A ameliorates experimental colitis in mice by inhibiting IRAK-1 activation in the NF-${\kappa}B$ and MAPK pathways. Br. J. Pharmacol. 162, 1731-1742. https://doi.org/10.1111/j.1476-5381.2010.01195.x
  16. Kim, D. H. (2002) Herbal medicines are activated by intestinal microflora. Nat. Prod. Sci. 8, 35-43.
  17. Kim, D. H., Cho, K. H., Moon, S. K., Kim, Y. S., Kim, D. H., Choi, J. S. and Chung, H. Y. (2005) Cytoprotective mechanism of baicalin against endothelial cell damage by peroxynitrite. J. Pharm. Pharmacol. 57, 1581-1590. https://doi.org/10.1211/jpp.57.12.0008
  18. Kobashi, K. and Akao, T. (1997) Relation of intestinal bacteria to pharmacological effects of glycosides. Biosci. Microflora. 16, 1-7. https://doi.org/10.12938/bifidus1996.16.1
  19. Lin, C. C. and Shieh, D. E. (1996) The anti-infl ammatory activity of Scutellaria rivularis extracts and its active components, baicalin, baicalein and wogonin. Am. J. Chin. Med. 24, 31-36. https://doi.org/10.1142/S0192415X96000050
  20. Lu, T., Song, J., Huang, F., Deng, Y., Xie, L., Wang, G. and Liu, X. (2007) Comparative pharmacokinetics of baicalin after oral administration of pure baicalin, Radix scutellariae extract and Huang- Lian-Jie-Du-Tang to rats. J. Ethnopharmacol. 110, 412-418. https://doi.org/10.1016/j.jep.2006.09.036
  21. Odashima, S., Ohta, T., Kohno, H., Matsuda, T., Kitagawa, I., Abe, H. and Arichi, S. (1985) Control of phenotypic expression of cultured B16 melanoma cells by plant glycosides. Cancer. Res. 45, 2781-2784.
  22. O'Keefe, J. H., Gheewala, N. M. and O'Keefe, J. O. (2008) Dietary strategies for improving post-prandial glucose, lipids, infl ammation, and cardiovascular health. J. Am. Coll. Cardiol. 51, 249-255. https://doi.org/10.1016/j.jacc.2007.10.016
  23. Paradkar, P. N., Blum, P. S., Berhow, M. A., Baumann, H. and Kuo, S. M. (2004) Dietary isofl avones suppress endotoxin-induced infl ammatory reaction in liver and intestine. Cancer. Lett. 215, 21-28. https://doi.org/10.1016/j.canlet.2004.05.019
  24. Shin, Y. W., Bae, E. A., Kim, S. S., Lee, Y. C. and Kim, D. H. (2005) Effect of ginsenoside Rb1 and compound K in chronic oxazoloneinduced mouse dermatitis. Int. Immunopharmacol. 5, 1183-1191. https://doi.org/10.1016/j.intimp.2005.02.016
  25. Takido, M., Aimi, M., Takahashi, S., Yamanouchi, S. and Torii, H. (1995) Studies on the constituents in the water extracts of crude drugs. I. On the roots of Scutellaria baicalensis Georgi (Wōgon) (1) (author's transl). Yakugaku. Zasshi. 95, 108-113.
  26. Trinh, H. T., Joh, E. H., Kwak, H. Y., Baek, N. I. and Kim, D. H. (2010) Anti-pruritic effect of baicalin and its metabolites, baicalein and oroxylin A, in mice. Acta. Pharmacol. Sin. 31, 718-724. https://doi.org/10.1038/aps.2010.42
  27. Wakabayashi, C., Hasegawa, H., Murata, J. and Saiki, I. (1989) In vivo antimetastatic action of ginseng protopanaxadiol saponins is based on their intestinal bacterial metabolites after oral administration. Oncol. Res. 9, 411-417.
  28. Wu, S., Sun, A. and Liu, R. (2005) Separation and purifi cation of baicalin and wogonoside from the Chinese medicinal plant Scutellaria baicalensis Georgi by high-speed counter-current chromatography. J. Chromatogr. A. 1066, 243-247. https://doi.org/10.1016/j.chroma.2005.01.054
  29. Xing, J., Chen, X. and Zhong, D. Absorption and enterohepatic circulation of baicalin in rats. Life. Sci. 78, 140-146.
  30. Xing, J., Chen, X., Sun, Y., Luan, Y. and Zhong, D. (2005) Interaction of baicalin and baicalein with antibiotics in the gastrointestinal tract. J. Pharm. Pharmacol. 57, 743-750. https://doi.org/10.1211/0022357056244
  31. Yang, J. H., Yun, M. Y., Lee, N. H., Kim, D. K., Kim, Y. I., Noh, Y. H., Kim, T. Y., Yoon, S. W. and Shin, S. C. (2008) The effects of ketorolac tromethamine and baicalein on the levels of infl ammatory factors in human synoviocytes. Arch. Pharm. Res. 31, 1517-1523. https://doi.org/10.1007/s12272-001-2138-6
  32. Yim, J. S., Kim, Y. S., Moon, S. K., Cho, K. H., Bae, H. S., Kim, J. J., Park, E. K. and Kim, D. H. (2004) Metabolic activities of ginsenoside Rb1, baicalin, glycyrrhizin and geniposide to their bioactive compounds by human intestinal microflora. Biol. Pharm. Bull. 27, 1580-1583. https://doi.org/10.1248/bpb.27.1580
  33. Zhu, Y. P. (1998) Chinese Materia Medica. Harwood academic publichers, Australia. 127-135.

Cited by

  1. Role of Intestinal Microbiota in Baicalin-Induced Drug Interaction and Its Pharmacokinetics vol.21, pp.3, 2016, https://doi.org/10.3390/molecules21030337
  2. Therapeutic potentials of baicalin and its aglycone, baicalein against inflammatory disorders vol.131, 2017, https://doi.org/10.1016/j.ejmech.2017.03.004
  3. The effect of gut microbiota on drug metabolism vol.9, pp.10, 2013, https://doi.org/10.1517/17425255.2013.807798
  4. Baicalin inhibits human osteosarcoma cells invasion, metastasis, and anoikis resistance by suppressing the transforming growth factor-β1-induced epithelial-to-mesenchymal transition vol.28, pp.6, 2017, https://doi.org/10.1097/CAD.0000000000000495
  5. Wogonoside displays anti-inflammatory effects through modulating inflammatory mediator expression using RAW264.7 cells vol.148, pp.1, 2013, https://doi.org/10.1016/j.jep.2013.04.025
  6. Baicalin Protects against TNF-α-Induced Injury by Down-Regulating miR-191a That Targets the Tight Junction Protein ZO-1 in IEC-6 Cells vol.40, pp.4, 2017, https://doi.org/10.1248/bpb.b16-00789
  7. Antiasthmatic Effects on Scutellaria baicalensis Georgi Extracts Against Airway Inflammation and Hyperresponsiveness Induced by Diesel Exhaust Particles with Ovalbumin Sensitization vol.20, pp.2, 2012, https://doi.org/10.7783/KJMCS.2012.20.2.129
  8. Baicalin alleviates oxidative stress damage in trabecular meshwork cells in vitro vol.391, pp.1, 2018, https://doi.org/10.1007/s00210-017-1433-9
  9. Comparative metabolism of the eight main bioactive ingredients of gegen qinlian decoction by the intestinal flora of diarrhoeal and healthy piglets pp.02693879, 2018, https://doi.org/10.1002/bmc.4421
  10. Effects of Intestinal Microecology on Metabolism and Pharmacokinetics of Oral Wogonoside and Baicalin vol.12, pp.4, 2012, https://doi.org/10.1177/1934578x1701200412
  11. Intestinal Microbiota-Associated Metabolites: Crucial Factors in the Effectiveness of Herbal Medicines and Diet Therapies vol.10, pp.None, 2012, https://doi.org/10.3389/fphys.2019.01343
  12. Pharmacokinetics of B-Ring Unsubstituted Flavones vol.11, pp.8, 2019, https://doi.org/10.3390/pharmaceutics11080370
  13. Isovitexin, A new metabolite, was found in the metabolites of co-cultured five flavonoids isolated from Ziziphus jujuba Mill var. spinosa seeds by rat intestinal flora vol.16, pp.71, 2020, https://doi.org/10.4103/pm.pm_454_19
  14. Oroxylin A alleviates immunoparalysis of CLP mice by degrading CHOP through interacting with FBXO15 vol.10, pp.1, 2012, https://doi.org/10.1038/s41598-020-76285-x
  15. Transcriptome Sequencing Explores the Mechanism of Baicalin on Bone Cancer Pain vol.14, pp.None, 2012, https://doi.org/10.2147/jir.s336028
  16. Efficacy and Safety of Modified Huang-Lian-Jie-Du Decoction Cream on Cancer Patients with Skin Side Effects Caused by EGFR Inhibition vol.9, pp.7, 2021, https://doi.org/10.3390/pr9071081
  17. The potential of pharmacological activities of the multi-compound treatment for GERD: literature review and a network pharmacology-based analysis vol.64, pp.1, 2012, https://doi.org/10.1186/s13765-021-00617-2
  18. Baicalin inhibits APEC-induced lung injury by regulating gut microbiota and SCFA production vol.12, pp.24, 2012, https://doi.org/10.1039/d1fo02407h
  19. Therapeutic effect of baicalin on inflammatory bowel disease: A review vol.283, pp.None, 2012, https://doi.org/10.1016/j.jep.2021.114749