DOI QR코드

DOI QR Code

The Effects of Visual Flow Speed's Modulation-Based Virtual Reality Program on Gait Function in Stroke Patients

시각 흐름 속도에 따른 가상현실 프로그램이 뇌졸중 환자의 보행에 미치는 영향

  • Kang, Hyung-Kyu (Department of Physical Therapy, The Graduate School, Sahmyook University) ;
  • Chung, Yi-Jung (Department of Physical Therapy, College of Health and Welfare, Sahmyook University)
  • 강형규 (삼육대학교 대학원 물리치료학과) ;
  • 정이정 (삼육대학교 보건과학대학 물리치료학과)
  • Received : 2011.11.25
  • Accepted : 2012.01.05
  • Published : 2012.01.31

Abstract

The purpose of this study was to evaluate the effects of a visual flow speed's modulation-based VR(virtual reality) program on gait function in stroke patients. Thirty one stroke patients were randomly selected at Dep. of Rehabilitation medicine of M hospital in Seoul. We carried out the gait analysis by dividing them with four conditions : one condition had applied without the visual flow modulation-based VR and another had done three visual flow speed's modulation-based VR(0.25, 1, 2 times). The gait analysis was used with GaitRite system. The data were collected using gait velocity, cadence, stride length, step length, single support time, and double support time during treatment. The results were as follows. First, the slow visual flow(0.25 times)-based VR program on the condition was significant decrease gait velocity, cadence, stride length, step length and increase single support time, double support time(p<.05). Second, the fast visual flow(2 times)-based VR program on the condition was significant increase gait velocity, cadence, stride length, step length, single support time on paretic lower limb and decrease single support time on non-paretic lower limb, double support time(p<.05). Third, the normal visual flow(1 times)-based VR program on the condition was not significant differ gait velocity, cadence, stride length, step length, single support time, double support time. In conclusion, the visual flow speed's modulation-based VR program improves gait function in chronic stroke patients.

본 연구는 시각흐름 속도에 따른 가상현실 프로그램이 뇌졸중 환자의 보행에 미치는 영향을 알아보고자 시행하였다. 연구 대상자는 서울시 소재 M재활전문병원에 입원 중인 뇌졸중 환자 중 무작위로 31명을 선정하였고 대상자는 가상현실 프로그램에 몰입하여 보행분석기 위에서 보행을 실시하였으며 가상현실 프로그램의 4가지 조건은 정상 보행과 0.25배, 1배, 2배의 시각흐름 속도변환 가상현실 프로그램으로 구성되었다. 중재동안 보행분석은 GaitRite보행분석시스템을 이용하여 보행 속도, 분속수, 활보장, 보장, 단하지지지 시간, 양하지지지 시간을 측정하였다. 그 결과 0.25배의 느린 시각흐름 가상현실 프로그램에서 연구 대상자는 보행속도, 분속수, 환측 활보장, 건측 활보장, 환측 보장, 건측 활보장이 통계적으로 유의하게 감소하였고(p<.05), 환측 단하지지지시간, 건측 단하지지지시간, 환측 양하 지지지시간, 건측 양하지지지시간이 통계적으로 유의하게 증가하였다(p<.05). 또한 2배의 빠른 시각흐름 가상현실 프로그램에서 연구 대상자는 보행속도, 분속수, 환측 활보장, 건측 활보장, 환측 보장, 건측 활보장, 환측 단하지지지시간이 유의하게 증가하였고(p<.05), 건측 단하지지지시간, 환측 양하지지지시간, 건측 양하지지지시간이 유의하게 감소하였다(p<.05). 따라서 가상현실 보행 프로그램의 적용 속도에 따라서 뇌졸중 환자의 보행 능력이 유의하게 차이를 나타낸다는 것을 알았다. 그러므로 뇌졸중 환자의 운동 프로그램을 계획할 때 보행 훈련 프로그램을 증가시킬 수 있는 다양한 훈련 프로그램이 요구된다.

Keywords

References

  1. Susan BO, Thomas JS. Physical Rehabilitation: Assessment and Treatment. Fourth Edition, Jaypee Brothers, 2000.
  2. Mauritz KH. Gait training in hemiplegia. Eur J Neurol, Vol. 9 No. 1, pp. 23-9, 2002. https://doi.org/10.1046/j.1468-1331.2002.00344.x
  3. Frigo C, Carabalona R, Dalla Mura M, Negrini S. The upper body segmental movements during walking by young females. Clin Biomech (Bristol, Avon), Vol. 18, No. 5, pp. 419-425, 2003. https://doi.org/10.1016/S0268-0033(03)00028-7
  4. Flansbjer UB, Miller M, Downham D, Lexell J. Progressive resistance training after stroke: effects on muscle strength, muscle tone, gait performance and perceived participation. J Rehabil Med, Vol. 40, No. 1, pp. 42-48, 2008. https://doi.org/10.2340/16501977-0129
  5. Freivogel S, Schmalohr D, Mehrholz J. Improved walking ability and reduced therapeutic stress with an electr mechanical gait device. J Rehabil Med, Vol. 41, No. 9, pp. 734-739, 2009. https://doi.org/10.2340/16501977-0422
  6. Krishnamoorthy V, Hsu WL, Kesar TM, Benoit DL, Banala SK, Perumal R, Sangwan V, Binder-Macleod SA, Agrawal SK, Scholz JP. Gait training after stroke: a pilot study combining a gravity-balanced orthosis, functional electrical stimulation, and visual feedback. J Neurol Phys Ther, Vol. 32, No. 4, pp. 192-202, 2008. https://doi.org/10.1097/NPT.0b013e31818e8fc2
  7. Roerdink M, Lamoth CJ, van Kordelaar J, Elich P, Konijnenbelt M, Kwakkel G, Beek PJ. Rhythm perturbations in acoustically paced treadmill walking after stroke. Neurorehabil Neural Repair, Vol. 23, No. 7, pp. 668-678, 2009. https://doi.org/10.1177/1545968309332879
  8. Rizzo A, Pair J, McNerney PJ, Eastlund E, Manson B, Gratch J, Hill R, Swartout B. Development of a VR therapy application for Iraq war military personnel with PTSD. Stud Health Technol Inform, vol. 111, pp. 407-413, 2005.
  9. Kang YJ, Ku J, Han K, Kim SI, Yu TW, Lee JH, Park CI. Development and Clinical Trial of Virtual Reality-Based Cognitive Assessment in Patients with Stroke: Preliminary Study. CyberPsychol Behav, Vol. 11, No. 3, pp. 329-339, 2008. https://doi.org/10.1089/cpb.2007.0116
  10. Zhang L, Abreu BC, Seale GS, Masel B, Christiansen CH, Ottenbacher KJ. A virtual reality environment for evaluation of a daily living skill in brain injury rehabilitation: reliability and validity. Arch Phys Med Rehabil, Vol. 84, No. 8, pp. 1118-1124, 2003. https://doi.org/10.1016/S0003-9993(03)00203-X
  11. Rizzo AA, Bowerly T, Buckwalter JG, Klimchuk D, Mitura R, Parsons TD. A virtual reality scenario for all seasons: the virtual classroom. CNS Spectr, Vol. 11, No. 1, pp. 35-44, 2006. https://doi.org/10.1017/S1092852900024196
  12. Regan D, Beverly KI. How do we avoid confounding the direction we are looking and the direction we are moving?. Science, Vol. 215, No. 4529, pp. 194-196, 1982. https://doi.org/10.1126/science.7053572
  13. Lamontagne A, Fung J, McFadyen BJ, Faubert J. Modulation of walking speed by changing optic flow in persons with stroke. J Neuroeng Rehabil, Vol. 4, pp. 22, 2007. https://doi.org/10.1186/1743-0003-4-22
  14. de Smet K, Malcolm P, Lenoir M, Segers V, De Clercq D. Effects of optic flow on spontaneous overground walk-to-run transition. Exp Brain Res, Vol. 193, No. 4, pp. 501-508, 2009. https://doi.org/10.1007/s00221-008-1648-6
  15. van Uden CJ, Besser MP. Test-retest reliability of temporal and spatial gait characteristics measured with an instrumented walkway system (GAITRite). BMC Musculoskelet Disord, Vol. 17, No. 5, pp. 13, 2004.
  16. Portney LG, Watkins MP. Foundations of clinical research: applications to practice. Connecticut: Appleton & Lange, 1993.
  17. McDonough AL, Batavia M, Chen FC, Kwon S, Ziai J. The validity and reliability of the GAITRite system's measurements: A preliminary evaluation. Arch Phys Med Rehabil, Vol. 82, No. 3, pp. 419-25, 2001. https://doi.org/10.1053/apmr.2001.19778
  18. Turnbull GI, Charteris J, Wall JC. A comparison of the range of walking speeds between normal and hemiplegia subjects. Scand J Rehabil Med, Vol. 27, No. 3, pp. 175-182, 1995.
  19. Edwards S. Neurological Physiotherapy: A Problem -Solving Approach. hurchill ivingstone, Edingburgh. 1996.
  20. Prokop T, Schubert M, Berger W. Visual influence on human locomotion. Modulation to changes in optic flow. Exp Brain Res, Vol. 114, No. 1, pp. 63-70, 1997. https://doi.org/10.1007/PL00005624
  21. Horlings CG, Carpenter MG, Kung UM, Honegger F, Wiederhold B, Allum JH. Influence of virtual reality on postural stability during movements of quiet stance. Neurosci Lett, Vol. 451, No. 3, pp. 227-231, 2009. https://doi.org/10.1016/j.neulet.2008.12.057
  22. Shumway-Cook A, Woollacott M. Attentional demands and postural control: the effect of sensory context. J Gerontol A Biol Sci Med Sci, Vol. 55, No. 1, pp. 10-16, 2000.
  23. Virk S, McConville KM. Virtual reality applications in improving postural control and minimizing falls. Conf Proc IEEE Eng Med Biol Soc, Vol. 1, pp. 2694-2697, 2006.
  24. You SH, Jang SH, Kim YH, Kwon YH, Barrow I, Hallett M. Cortical reorganization induced by virtual reality therapy in a child with hemiparetic cerebral palsy. Dev Med Child Neurol, Vol. 47, No. 9, pp. 628-635, 2005. https://doi.org/10.1017/S0012162205001234
  25. Nudo RJ, Plautz EJ, Frost SB. Role of adaptive plasticity in recovery of function after damage to motor cortex. Muscle Nerve, Vol. 24, No. 8, pp. 1000-19, 2001. https://doi.org/10.1002/mus.1104
  26. Fisher BE, Sullivan KJ. Activity-dependent factors affecting poststroke functional outcomes. Top Stroke Rehabil, Vol. 8, No. 3, pp. 31-44, 2001. https://doi.org/10.1310/B3JD-NML4-V1FB-5YHG
  27. Kim YH, Jang SH., Byun WM, Han BS, Lee KH, Ahn SH. Ipsilateral motor pathway confirmed by combined brain mapping of a patient with hemiparetic stroke: a case report. Arch Phys Med Rehabil, Vol. 85, No. 8, pp. 1351-1353, 2004. https://doi.org/10.1016/j.apmr.2003.08.102
  28. You SH, Jang SH, Kim YH, Hallett M, Ahn SH, Kwon YH, Kim JH, Lee MY. Virtual reality-induced cortical reorganization and associated locomotor recovery in chronic stroke: an experimenter-blind randomized study. Stroke, Vol. 36, No. 6, pp. 1166-1171, 2005. https://doi.org/10.1161/01.STR.0000162715.43417.91
  29. Jang SH, You SH, Hallett M, Cho YW, Park CM, Cho SH, Lee HY, Kim TH. Cortical reorganization and associated functional motor recovery after virtual reality in patients with chronic stroke: an experimenter-blind preliminary study. Arch Phys Med Rehabil, Vol. 86, No. 11, pp. 2218-2223, 2005. https://doi.org/10.1016/j.apmr.2005.04.015