DOI QR코드

DOI QR Code

Studies on Crystallographic and Mossbauer Spectra of the LiFe0.9Mn0.1PO4

LiFe0.9Mn0.1PO4 물질의 결정구조 및 뫼스바우어 분광 연구

  • Received : 2012.01.16
  • Accepted : 2012.02.01
  • Published : 2012.02.29

Abstract

The olivine structured $LiFe_{0.9}Mn_{0.1}PO_4$ material was prepared by solid state method, and was analyzed by x-ray diffractometer (XRD), superconducting quantum interference devices (SQUID) and Mossbauer spectroscopy. The crystal structure of $LiFe_{0.9}Mn_{0.1}PO_4$ was determined to be orthorhombic (space group: Pnma) by Rietveld refinement method. The value of N$\acute{e}$el temperature ($T_N$) for $LiFe_{0.9}Mn_{0.1}PO_4$ was determined 50 K. The temperature dependence of the magnetization curves showed magnetic phase transition from paramagnetic to antiferromagnetic at $T_N$ by SQUID measurement. M$\ddot{o}$ssbauer spectra of $LiFe_{0.9}Mn_{0.1}PO_4$ showed 2 absorption lines at temperatures above $T_N$ and showed asymmetric 8 absorption lines at temperatures below $T_N$. These spectra occurred due to the magnetic dipole and electric quardrupole interaction caused by strong crystalline field at asymmetric $FeO_6$ octahedral sites.

Olivine 구조인 $LiFe_{0.9}Mn_{0.1}PO_4$ 분말 시료를 직접합성법(solid state method) 으로 제조하였으며, 결정학적 및 자기적 특성을 x-선 회절(x-ray diffractometer), 초전도 양자 간섭계(superconducting quantum interference devices) 및 뫼스바우어 분광(M$\ddot{o}$ssbauer spectroscopy) 실험을 이용하여 연구하였다. $LiFe_{0.9}Mn_{0.1}PO_4$ 시료의 결정구조는 공간그룹이 Pnma인 orthorhombic 구조임을 Rietveld 정련법으로 분석하였다. $LiFe_{0.9}Mn_{0.1}PO_4$ 시료의 닐온도 (N$\acute{e}$el temperature; $T_N$)는 50 K으로 나타내었고 닐온도에서 자기 상전이가 일어나는 것을 초전도 양자 간섭계 실험을 통하여 확인하였다. Fe(Mn)-O 이온간 거리를 분석하여 $FeO_6(MnO_6)$ 팔면체 구조가 비대칭임을 확인하였고 그 구조로 인하여 강한 결정장에 영향을 받으며, 닐온도 이상에서 자기 2중극자 상호작용은 사라지고, 강한 결정장에 의한 전기 4중극자 작용만이 존재하여 두 개의 흡수선이 나타나는 것을 뫼스바우어 분광 실험을 통하여 분석하였다.

Keywords

References

  1. X. L. Wu, L. Y. Jiang, F. F. Cao, Y. G. Guo, and L. J. Wan, Adv. Mater. 21, 2710 (2009). https://doi.org/10.1002/adma.200802998
  2. M. Armand and J.-M. Tarascon, Nature 451, 652 (2008). https://doi.org/10.1038/451652a
  3. T. Jiang, G. Chen, A. Li, C. Wang, and Y. Wei, J. Alloy. Compd. 478, 604 (2009). https://doi.org/10.1016/j.jallcom.2008.11.147
  4. J. Li, V. O. Garlea, J. L. Zarestky, and D. Vaknin, Phys. Rev. B 73, 024410 (2006). https://doi.org/10.1103/PhysRevB.73.024410
  5. A. K. Padhi, K. S. Nanjundaswamy, and J. B. Goodenough, J. Electrochem. Soc. 144, 1188 (1997). https://doi.org/10.1149/1.1837571
  6. T. Maxisch and G. Ceder, Phys. Rev. B 73, 174112 (2006). https://doi.org/10.1103/PhysRevB.73.174112
  7. W. Tian, J. Li, J. W. Lynn, J. L. Zarestky, and D. Vaknin, Phys. Rev. B 78, 184429 (2008). https://doi.org/10.1103/PhysRevB.78.184429
  8. D. Vaknin, J. L. Zarestky, J.-P. Rivera, and H. Schmid, Phys. Rev. Lett. 92, 207201 (2004). https://doi.org/10.1103/PhysRevLett.92.207201
  9. Bas B. Van Aken, J. P. Rivera, H. Schmid, and M. Fiebig, Phys. Rev. Lett. 101, 157202 (2008). https://doi.org/10.1103/PhysRevLett.101.157202
  10. J. Li, W. Tian, Y. Chen, J. L. Zarestky, J. W. Lynn, and D. Vaknin, Phys. Rev. B 79, 144410 (2009). https://doi.org/10.1103/PhysRevB.79.144410
  11. D. P. Chen and X. Wang, J. Appl. Phys. 101, 09N512 (2007). https://doi.org/10.1063/1.2712326
  12. C. H. Rhee, I. K. Lee, S. J. Moon, S. J. Kim, and C. S. Kim, J. Kor. Phys. Soc. 58, 472 (2011). https://doi.org/10.3938/jkps.58.472