Nesfatin-1 as a New Potent Regulator in Reproductive System

  • Kim, Jinhee (Dept. of Bioenvironmental Technology, College of Natural Sciences, Seoul Women's University) ;
  • Yang, Hyunwon (Dept. of Bioenvironmental Technology, College of Natural Sciences, Seoul Women's University)
  • Received : 2012.11.06
  • Accepted : 2012.12.20
  • Published : 2012.12.31

Abstract

Nesfatin-1 is a recently discovered anorexigenic peptide which is distributed in several brain areas implicated in the feeding and metabolic regulation. Recently, it has been reported that nesfatin-1 is expressed not only in brain, but also in peripheral organs such as digestive organs, adipose tissues, heart, and reproductive organs. Nesfatin-1 is markedly expressed in the pancreas, stomach and duodenum. Eventually, the nesfatin-1 expression in the digestive organs may be regulated by nutritional status, which suggests a regulatory role of peripheral nesfatin-1 in energy homeostasis. Nesfatin-1 is also detected in the adipose tissues of humans and rodents, indicating that nesfatin-1 expression in the fat may regulate food intake independently, rather than relying on leptin. In addition, nesfatin-1 is expressed in the heart as a cardiac peptide. It suggests that nesfatin-1 may regulate cardiac function and encourage clinical potential in the presence of nutrition-dependent physio-pathologic cardiovascular diseases. Currently, only a few studies demonstrate that nesfatin-1 is expressed in the reproductive system. However, it is not clear yet what function of nesfatin-1 is in the reproductive organs. Here, we summarize the expression of nesfatin-1 and its roles in brain and peripheral organs and discuss the possible roles of nesfatin-1 expressed in reproductive organs, including testis, epididymis, ovary, and uterus. We come to the conclusion that nesfatin-1 as a local regulator in male and female reproductive organs may regulate the steroidogenesis in the testis and ovary and the physiological activity in epididymis and uterus.

Keywords

References

  1. Akingbemi BT, Sottas CM, Koulova AI, Klinefelter GR, Hardy MP (2004) Inhibition of testicular steroidogenesis by the xenoestrogen bisphenol A is associated with reduced pituitary luteinizing hormone secretion and decreased steroidogenic enzyme gene expression in rat Leydig cells. Endocrinology 145:592-603.
  2. Angelone T, Filice E, Pasqua T, Amodio N, Galluccio M, Montesanti G, Quintieri AM, Cerra MC (2012) Nesfatin-1 as a novel cardiac peptide: identification, functional characterization, and protection against ischemia/reperfusion injury. Cell Mol Life Sci Epub ahead of print.
  3. Aydin S, Dag E, Ozkan Y, Erman F, Dagli AF, Kilic N, Sahin I, Karatas F, Yoldas T, Barim AO, Kendir Y (2009) Nesfatin-1 and ghrelin levels in serum and saliva of epileptic patients: hormonal changes can have a major effect on seizure disorders. Mol Cell Biochem 328:49-56. https://doi.org/10.1007/s11010-009-0073-x
  4. Barnikol-Watanabe S, Gross NA, Gotz H, Henkel T, Karabinos A, Kratzin H, Barnikol HU, Hilschmann N (1994) Human protein NEFA, a novel DNA binding/EF-hand/leucine zipper protein. Molecular cloning and sequence analysis of the cDNA, isolation and characterization of the protein. Biol Chem Hoppe Seyler 375:497-512. https://doi.org/10.1515/bchm3.1994.375.8.497
  5. Bonnet MS, Pecchi E, Trouslard J, Jean A, Dallaporta M, Troadec JD (2009) Central nesfatin-1 expressing neurons are sensitive to peripheral inflammatory stimulus. J Neuroinflammation 6:27. https://doi.org/10.1186/1742-2094-6-27
  6. Brailoiu GC, Dun SL, Brailoiu E, Inan S, Yang J, Chang JK, Dun NJ (2007) Nesfatin-1: distribution and interaction with a G protein coupled receptor in the rat brain. Endocrinology 148:5088-5094. https://doi.org/10.1210/en.2007-0701
  7. Chen X, Dong J, Jiang ZY (2012) Nesfatin-1 influences the excitability of glucosensing neurons in the hypothalamic nuclei and inhibits the food intake. Regul Pep 177:21-26. https://doi.org/10.1016/j.regpep.2012.04.003
  8. Dayas CV, Buller KM, Day TA (1999) Neuroendocrine responses to an emotional stressor: evidence for involvement of the medial but not the central amygdala. Eur J Neurosci 11:2312-2322. https://doi.org/10.1046/j.1460-9568.1999.00645.x
  9. Dufau ML (1988) Endocrine regulation and communicating functions of the Leydig cell. Annu Rev Physiol 50: 483-508. https://doi.org/10.1146/annurev.ph.50.030188.002411
  10. Foo KS, Brauner H, Ostenson CG, Broberger C (2010) Nucleobindin-2/nesfatin in the endocrine pancreas: distribution and relationship to glycaemic state. J Endocrinol 204:255-263. https://doi.org/10.1677/JOE-09-0254
  11. Foo KS, Brauner H, Ostenson CG, Broberger C (2010) Nucleobindin-2/nesfatin in the endocrine pancreas: distribution and relationship to glycaemic state. J. Endocrinol 204:255-263. https://doi.org/10.1677/JOE-09-0254
  12. Foo KS, Brismar H, Broberger C (2008) Distribution and neuropeptide coexistence of nucleobindin-2 mRNA/nesfatin-like immunoreactivityin the rat CNS. Neuroscience 156:563-579. https://doi.org/10.1016/j.neuroscience.2008.07.054
  13. Fort P, Salvert D, Hanriot L, Jego S, Shimizu H, Hashimoto K, Mori M, Luppi PH (2008) The satiety molecule nesfatin-1 is co-expressed with melanin concentrating hormone in tuberal hypothalamic neurons of the rat. Neuroscience 155:174-181. https://doi.org/10.1016/j.neuroscience.2008.05.035
  14. Garcia-Galiano D, Navarro VM, Gaytan F, Tena-Sempere M (2010) Expanding roles of NUCB2/nesfatin-1 in neuroendocrine regulation. J Mol Endocrinol 45:281-290. https://doi.org/10.1677/JME-10-0059
  15. Garcia-Galiano D, Pineda R, Ilhan T, Castellano JM, Ruiz-Pino F, Sanchez-Garrido MA, Vazquez MJ, Sangiao-Alvarellos S, Romero-Ruiz A, Pinilla L, Dieguez C, Gaytan F, Tena-Sempere M (2012) Cellular distribution, regulated expression, and functional role of the anorexigenic peptide, NUCB2/ nesfatin-1, in the testis. Endocrinology 153:1959-1971. https://doi.org/10.1210/en.2011-2032
  16. Goebel M, Stengel A, Wang L, Lambrecht NW, Tache Y (2009a) Nesfatin-1 immunoreactivity in rat brain and spinal cord autonomic nuclei. Neurosci Lett 452:241-246. https://doi.org/10.1016/j.neulet.2009.01.064
  17. Goebel M, Stengel A, Wang L, Tache Y (2009b) Restraint stress activates nesfatin-1-immunoreactive brain nuclei in rats. Brain Res 1300:114-124.
  18. Goebel M, Wang L, Stengel A, Tache Y (2011a) Localization of nesfatin-1 neurons in the mouse brain and functional implication. Brain Res 1396:20-34.
  19. Gonkowski A, Rychlik A, Nowicki M, Nieradka R, Bulc M, Caika J (2012) A population of nesfatin 1-like immunoreactive (LI) cells in the mucosal layer of the canine digestive tract. Res Vet Sci 93:1119-1121. https://doi.org/10.1016/j.rvsc.2012.06.002
  20. Gonzalez R, Mohan H, Unniappan S (2012a) Nucleobindins: bioactive precursor proteins encoding putative endocrine factors?. Gen Comp Endocrinol 176:341-346. https://doi.org/10.1016/j.ygcen.2011.11.021
  21. Gonzalez R, Perry RL, Gao X, Gaidhu MP, Tsushima RG, Ceddia RB, Unniappan S (2011a) Nutrient responsive nesfatin-1 regulates energy balance and induces glucose-stimulated insulin secretion in rats. Endocrinology 152:3628-3637. https://doi.org/10.1210/en.2010-1471
  22. Gonzalez R, Reingold BK, Gao X, Gaidhu MP, Tsushima RG, Unniappan S (2011b) Nesfatin-1 exerts a direct, glucose-dependent insulinotropic action on mouse islet beta- and MIN6 cells. Endocrinol 208:9-16.
  23. Gonzalez R, Shepperd E, Thiruppugazh V, Lohan S, Grey C, Chang JP, Unniappan S (2012b) Nesfatin-1 regulates the hypothalamo-pituitary-ovarian axis of fish. Biol Reprod 87:1-11. https://doi.org/10.1095/biolreprod.112.101691
  24. Gonzalez R, Tiwari A, Unniappan S (2009) Pancreatic beta cells colocalize insulin and pronesfatin immunoreactivity in rodents. Biochem Biophys Res Commun 381:643-648. https://doi.org/10.1016/j.bbrc.2009.02.104
  25. Inhoff T, Stengel A, Peter L, Goebel M, Tache Y, Bannert N, Wiedenmann B, Klapp BF, Mönnikes H, Kobelt P (2010) Novel insight in distribution of nesfatin-1 and phospho-mTOR in the arcuate nucleus of the hypothalamus of rats. Peptides 31:257-262. https://doi.org/10.1016/j.peptides.2009.11.024
  26. Iwasaki Y, Yada T (2012) Vagal afferents sense mealassociated gastrointestinal and pancreatic hormones: Mechanism and physiological role. Neuropeptides 46:291-297. https://doi.org/10.1016/j.npep.2012.08.009
  27. Kaitu'u-Lino TJ, Morison NB, Salamonsen LA (2007) Neutrophil depletion retards endometrial repair in a mouse model. Cell Tissue Res 328:197-206. https://doi.org/10.1007/s00441-006-0358-2
  28. Kanai Y, Tanuma S (1992) Purification of a novel B cell growth and differentiation factor associated with lupus syndrome. Immunol Lett 32:43-48. https://doi.org/10.1016/0165-2478(92)90197-V
  29. Kim JH, Kim HS, Kim SM, Yang HJ, Cho HH, Hwang SP, Moon CI, Yang HW (2011a) Expression of nesfatin-1/NUCB2 and its binding site in mouse testis and epididymis. Dev Reprod 15:249-256.
  30. Kim JH, Lee KR, Kim HK, No SH, Yoo HM, Moon CI, Yang HW (2011b) 17beta-estradiol regulates the expression of nesfatin-1/Nucb2 in mouse uterus. Dev Reprod 15:349-357.
  31. Kim JH, Youn MR, Bang SY, Sim JY, Kang HR, Yang HW (2010) Expression of nesfatin-1/NUCB2 and its binding site in mouse ovary. Dev Reprod 14:287-295.
  32. Kohno D, Nakata M, Maejima Y, Shimizu H, Sedbazar U, Yoshida N, Dezaki K, Onaka T, Mori M, Yada T (2008) Nesfatin-1 neurons in paraventricular and supraoptic nuclei of the rat hypothalamus coexpress oxytocin and vasopressin and are activated by refeeding. Endocrinology 149:1295-1301.
  33. Kukucka Mark A, Misra Hara P (1992) HPLC determination of an oxytocin-like peptide produced by isolated guinea pig Leydig cells: stimulation by ascorbate. Arch Androl 29:185-190. https://doi.org/10.3109/01485019208987723
  34. Li QC, Wang HY, Chen X, Guan HZ, Jiang ZY (2010) Fasting plasma levels of nesfatin-1 in patients with type 1 and type 2 diabetes mellitus and the nutrientrelated fluctuation of nesfatin-1 level in normal humans. Regul Pept 159:72-77. https://doi.org/10.1016/j.regpep.2009.11.003
  35. Li Z, Xu G, Li Y, Zhao J, Mulholland MW, Zhang W (2012) mTOR-dependent modulation of gastric nesfatin-1/NUCB2. Cell Physiol Biochem 29:493-500. https://doi.org/10.1159/000338503
  36. Maejima Y, Sedbazar U, Suyama S, Kohno D, Onaka T, Takano E, Yoshida N, Koike M, Uchiyama Y, Fujiwara K, Yashiro T, Horvath TL, Dietrich MO, Tanaka S, Dezaki K, Oh IS, Hashimoto K, Shimizu H, Nakata M, Mori M, Yada T (2009) Nesfatin-1-regulated oxytocinergic signaling in the paraventricular nucleus causes anorexia through a leptin-independent melanocortin pathway. Cell Metab 2009:355-365.
  37. Merali Z, Cayer C, Kent P, Anisman H (2008) Nesfatin-1 increases anxiety- and fear-related behaviors in the rat. Psychopharmacology 201:115-123. https://doi.org/10.1007/s00213-008-1252-2
  38. Mimee A, Smith PM, Ferguson AV (2012) Nesfatin-1 influences the excitability of neurons in the nucleus of the solitary tract and regulates cardiovascular function. Am J Physiol Regul Integr Comp Physiol 302:1297-1304. https://doi.org/10.1152/ajpregu.00266.2011
  39. Miura K, Titani K, Kurosawa Y, Kanai Y (1992) Molecular cloning of nucleobindin, a novel DNAbinding protein that contains both a signal peptide and a leucine zipper structure. Biochem Biophys Res Commun 187:375-380. https://doi.org/10.1016/S0006-291X(05)81503-7
  40. Mohan H, Unniappan S (2012) Ontogenic pattern of nucleobindin-2/nesfatin-1 expression in the gastroenteropancreatic tissues and serum of Sprague Dawley rats. Regul Pept 175:61-69. https://doi.org/10.1016/j.regpep.2012.02.006
  41. Nakata M, Manaka K, Yamamoto S, Mori M, Yada T (2011) Nesfatin-1 enhances glucose-induced insulin secretion by promoting $Ca_{2+}$ influx through L-type channels in mouse islet beta-cells. Endocr J 58:305-313. https://doi.org/10.1507/endocrj.K11E-056
  42. Ozsavci D, Ersahin M, Sener A, Ozakpinar OB, Toklu HZ, AkakIn D, Sener G, Yegen BC (2011) The novel function of nesfatin-1 as an anti-inflammatory and anti-apoptotic peptide in subarachnoid hemorrhageinduced oxidative brain damage in rats. Neurosurgery 68:1699-1708. https://doi.org/10.1227/NEU.0b013e318210f258
  43. Ogiso K, Asakawa A, Amitani H, Nakahara T, Ushikai M, Haruta I, Koyama K, Amitani M, Harada T, Yasuhara D, Inui A (2011) Plasma nesfatin-1 concentrations in restricting-type anorexia nervosa. Peptide 32:150-153. https://doi.org/10.1016/j.peptides.2010.10.004
  44. Oh-I S, Shimizu H, Satoh T, Okada S, Adachi S, Inoue K, Eguchi H, Yamamoto M, Imaki T, Hashimoto K, Tsuchiya T, Monden T, Horiguchi K, Yamada M, Mori M (2006) Identification of nesfatin-1 as a satiety molecule in the hypothalamus. Nature 443:709-712. https://doi.org/10.1038/nature05162
  45. Okere B, Xu L, Roubos EW, Sonetti D, Kozicz T (2010) Restraint stress alters the secretory activity of neurons co-expressing urocortin-1, cocaine- and amphetamine-regulated transcript peptide and nesfatin-1 in the mouse Edinger-Westphal nucleus. Brain Res 1317:92-99.
  46. Osaki A, Shimizu H, Ishizuka N, Suzuki Y, Mori M, Inoue S (2012). Enhanced expression of nesfatin/nucleobindin-2 in white adipose tissue of ventromedial hypothalamus-lesioned rats. Neurosci Lett 521:46-51. https://doi.org/10.1016/j.neulet.2012.05.056
  47. Palasz A, Krzystanek M, Worthington J, Czajkowska B, Kostro K, Wiaderkiewicz R, Bajor G (2012) Nesfatin-1, a unique regulatory neuropeptide of the brain. Neuropeptides 46:105-112. https://doi.org/10.1016/j.npep.2011.12.002
  48. Price CJ, Samson WK, Ferguson AV (2008) Nesfatin-1 inhibits NPY neurons in the arcuate nucleus. Brain Res 1230:99-106.
  49. Ramanjaneya M, Chen J, Brown JE, Tripathi G, Hallschmid M, Patel S, Kern W, Hillhouse EW, Lehnert H, Tan BK, Randeva HS (2010) Identification of nesfatin-1 in human and murine adipose tissue: a novel depot-specific adipokine with increased levels in obesity. Endocrinology 151:3169-3180. https://doi.org/10.1210/en.2009-1358
  50. Shimizu H, Oh-I S, Hashimoto K, Nakata M, Yamamoto S, Yoshida N, Eguchi H, Kato I, Inoue K, Satoh T, Okada S, Yamada M, Yada T, Mori M (2009b) Peripheral administration of nesfatin-1 reduces food intake in mice: the leptin-independent mechanism. Endocrinology 150:662-671.
  51. Shimizu H, Oh-I S, Okada S, Mori M (2009c) Nesfatin-1: an overview and future clinical application. Endocr. J 56:537-543. https://doi.org/10.1507/endocrj.K09E-117
  52. Shimizu H, Ohsaki A, Oh-I S, Okada S, Mori M (2009a) A new anorexigenic protein, nesfatin-1. Peptides 30:995-998. https://doi.org/10.1016/j.peptides.2009.01.002
  53. Sonoda Y, Mukaida N, Wang JB, Shimada-Hiratsuka M, Naito M, Kasahara T, Harada A, Inoue M, Matsushima K (1998) Physiologic regulation of postovulatory neutrophil migration into vagina in mice by a C-X-C chemokine (s). J Immunol 160:6159-6165.
  54. Steffl M, Telgen L, Schweiger M, Amselgruber WM (2010) Estrous cycle-dependent activity of neutrophils in the porcine endometrium: possible involvement of heat shock protein 27 and lactoferrin. Anim Reprod Sci 121:159-166.
  55. Stengel A, Goebel M, Jawien J, Kobelt P, Tache Y, Lambrecht NW (2011) Lipopolysaccharide increases gastric and circulating NUCB2/nesfatin-1 concentrations in rats. Peptides 32:1942-1947. https://doi.org/10.1016/j.peptides.2011.07.006
  56. Stengel A, Goebel M, Tache Y (2010a) Nesfatin-1: a novel inhibitory regulator of food intake and body weight. Obes Rev 12:261-271.
  57. Stengel A, Goebel M, Wang L, Kato I, Mori M, Tache Y (2012a) Nesfatin-130-59 but not the N- and Cterminal fragments, nesfatin-11-29 and nesfatin-160-82 injected intracerebroventricularly decreases dark phase food intake by increasing inter-meal intervals in mice. Peptides 35:143-148. https://doi.org/10.1016/j.peptides.2012.03.015
  58. Stengel A, Goebel M, Wang L, Rivier J, Kobelt P, Mönnikes H, Lambrecht NW, Tache Y (2009a) Central nesfatin-1 reduces darkphase food intake and gastric emptying in rats: differential role of corticotropin-releasing factor 2 receptor. Endocrinology 150:4911-4919. https://doi.org/10.1210/en.2009-0578
  59. Stengel A, Goebel M, Wang L, Tache Y (2009b) Ghrelin, des-acyl ghrelin and nesfatin-1 in gastric X/A-like cells: role as regulators of food intake and body weight. Peptides 31:357-369.
  60. Stengel A, Goebel M, Wang L, Tache Y (2010b) Abdominal surgery activates nesfatin-1 immunoreactive brain nuclei in rats. Peptides 31:263-270. https://doi.org/10.1016/j.peptides.2009.11.015
  61. Stengel A, Goebel M, Yakubov I, Wang L, Witcher D, Coskun T, Tache Y, Sachs G, Lambrecht NW (2009c) Identification and characterization of nesfatin-1 immunoreactivity in endocrine cell types of the rat gastric oxyntic mucosa. Endocrinology 150:232-238.
  62. Stengel A, Tache Y (2010) Nesfatin-1 - role as possible new potent regulator of food intake. Regl Pept 163:18-23. https://doi.org/10.1016/j.regpep.2010.05.002
  63. Stengel A, Tache Y (2012) Gastric peptides and their regulation of hunger and satiety. Curr Gastroenterol Rep 14:480-488. https://doi.org/10.1007/s11894-012-0291-3
  64. Su Y, Zhang J, Tang Y, Bi F, Liu JN (2010) The novel function of nesfatin-1: Anti-hyperglycemia. Biochem Biophys Res Commun 391:1039-1042. https://doi.org/10.1016/j.bbrc.2009.12.014
  65. Tagaya Y, Miura A, Okada S, Ohshima K, Mori M (2012a) Nucleobindin-2 is a positive modulator of EGF-dependent signals leading to enhancement of cell growth and suppression of adipocyte differentiation. Endocrinology 153:3308-3319. https://doi.org/10.1210/en.2011-2154
  66. Tagaya Y, Osaki A, Miura A, Okada S, Ohshima K, Hashimoto K, Yamada M, Satoh T, Shimizu H, Mori M (2012b) Secreted nucleobindin-2 inhibits 3T3-L1 adipocyte differentiation. Protein Pept Lett 19:997-1004. https://doi.org/10.2174/092986612802084546
  67. Tang CH, Fu XJ, Xu XL, Wei XJ, Pan HS (2012) The anti-inflammatory and anti-apoptotic effects of nesfatin-1 in the traumatic rat brain. Peptides 36:39-45. https://doi.org/10.1016/j.peptides.2012.04.014
  68. Tsuchiya T, Shimizu H, Yamada M, Osaki A, Oh-I S, Ariyama Y, Takahashi H, Okada S, Hashimoto K, Satoh T, Kojima M, Mori M (2010) Fasting concentrations of nesfatin-1 are negatively correlated with body mass index in non-obese males. Clin Endocrinol 73:484-490.
  69. Xia ZF, Fritze DM, Li JY, Chai B, Zhang C, Zhang W, Mulholland MW (2012) Nesfatin-1 inhibits gastric acid secretion via a central vagal mechanism in rats. Am J Physiol Gastrointest Liver Physiol 303:570-577. https://doi.org/10.1152/ajpgi.00178.2012
  70. Xu L, Bloem B, Gaszner B, Roubos EW, Kozicz T (2009) Sex-specific effects of fasting on urocortin 1, cocaine-and amphetamine-regulated transcript peptide and nesfatin-1 expression in the rat Edinger-Westphal nucleus. Neuroscience 162:1141-1149. https://doi.org/10.1016/j.neuroscience.2009.05.003
  71. Xu L, Bloem B, Gaszner B, Roubos EW, Kozicz T (2010) Stress-related changes in the activity of cocaine-and amphetamine-regulated transcript and nesfatin neurons in the midbrain non-preganglionic Edinger-Westphal nucleus in the rat. Neuroscience 170:478-488. https://doi.org/10.1016/j.neuroscience.2010.07.001
  72. Yamawaki H, Takahashi M, Mukohda M, Morita T, Okada M, Hara Y (2012) A novel adipocytokine, nesfatin-1 modulates peripheral arterial contractility and blood pressure in rats. Biochem Biophys Res Commun 418:676-681. https://doi.org/10.1016/j.bbrc.2012.01.076
  73. Yang M, Zhang Z, Wang C, Li K, Li S, Boden G, Li L, Yang G (2012) Nesfatin-1 action in the brain increases insulin sensitivity through Akt/AMPK/TORC2 pathway in diet-induced insulin resistance. Diabetes 61:1959-1968. https://doi.org/10.2337/db11-1755
  74. Yosten GL, Redlinger L, Samson WK (2012) Evidence for a role of endogenous nesfatin-1 in the control of water drinking. J Neuroendocrinol 24:1078-1084. https://doi.org/10.1111/j.1365-2826.2012.02304.x
  75. Yosten GL, Samson WK (2009) Nesfatin-1 exerts cardiovascular actions in brain: possible interaction with the central melanocortin system. Am J Physiol Regul Integr Comp Physiol 297:330-336. https://doi.org/10.1152/ajpregu.90867.2008
  76. Yosten GL, Samson WK (2010) The anorexigenic and hypertensive effects of nesfatin-1 are reversed by pretreatment with an oxytocin receptor antagonist. Am J Physiol Regul Integr Comp Physiol 298:1642-1647. https://doi.org/10.1152/ajpregu.00804.2009
  77. Zhang AQ, Li XL, Jiang CY, Lin L, Shi RH, Chen JD, Oomura Y (2010) Expression of nesfatin-1/NUCB2 in rodent digestive system. World J Gastroenterol 16:1735-1741. https://doi.org/10.3748/wjg.v16.i14.1735