DOI QR코드

DOI QR Code

Prevalence of Drug Resistance-Associated Gene Mutations in Plasmodium vivax in Central China

  • Lu, Feng (Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine) ;
  • Wang, Bo (Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine) ;
  • Cao, Jun (Jiangsu Institute of Parasitic Diseases, Key Laboratory on Technology for Parasitic Disease Prevention and Control, Ministry of Health) ;
  • Sattabongkot, Jetsumon (Mahidol Vivax Research Center, Faculty of Tropical Medicine, Mahidol University) ;
  • Zhou, Huayun (Jiangsu Institute of Parasitic Diseases, Key Laboratory on Technology for Parasitic Disease Prevention and Control, Ministry of Health) ;
  • Zhu, Guoding (Jiangsu Institute of Parasitic Diseases, Key Laboratory on Technology for Parasitic Disease Prevention and Control, Ministry of Health) ;
  • Kim, Kwonkee (Department of Internal Medicine, Gachon University Cheolwon Gil Hospital) ;
  • Gao, Qi (Jiangsu Institute of Parasitic Diseases, Key Laboratory on Technology for Parasitic Disease Prevention and Control, Ministry of Health) ;
  • Han, Eun-Taek (Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine)
  • 투고 : 2012.07.29
  • 심사 : 2012.10.12
  • 발행 : 2012.12.17

초록

Resistance of Plasmodium spp. to anti-malarial drugs is the primary obstacle in the fight against malaria, and molecular markers for the drug resistance have been applied as an adjunct in the surveillance of the resistance. In this study, we investigated the prevalence of mutations in pvmdr1, pvcrt-o, pvdhfr, and pvdhps genes in temperate-zone P. vivax parasites from central China. A total of 26 isolates were selected, including 8 which were previously shown to have a lower susceptibility to chloroquine in vitro. For pvmdr1, pvcrt-o, and pvdhps genes, no resistance-conferring mutations were discovered. However, a highly prevalent (69.2%), single-point mutation (S117N) was found in pvdhfr gene. In addition, tandem repeat polymorphisms existed in pvdhfr and pvdhps genes, which warranted further studies in relation to the parasite resistance to antifolate drugs. The study further suggests that P. vivax populations in central China may still be relatively susceptible to chloroquine and sulfadoxine-pyrimethamine.

키워드

참고문헌

  1. Anstey NM, Russell B, Yeo TW, Price RN. The pathophysiology of vivax malaria. Trends Parasitol 2009; 25: 220-227. https://doi.org/10.1016/j.pt.2009.02.003
  2. Mueller I, Galinski MR, Baird JK, Carlton JM, Kochar DK, Alonso PL, del Portillo HA. Key gaps in the knowledge of Plasmodium vivax, a neglected human malaria parasite. Lancet Infect Dis 2009; 9: 555-566. https://doi.org/10.1016/S1473-3099(09)70177-X
  3. Zhou SS, Wang Y, Tang LH. Malaria situation in the People's Republic of China in 2006. Chinese J Parasitol Parasit Dis 2007; 25: 439-441 (in Chinese).
  4. Lu F, Gao Q, Chotivanich K, Xia H, Cao J, Udomsangpetch R, Cui L, Sattabongkot J. In vitro anti-malarial drug susceptibility of temperate Plasmodium vivax from central China. Am J Trop Med Hyg 2011; 85: 197-201. https://doi.org/10.4269/ajtmh.2011.10-0070
  5. Suwanarusk R, Russell B, Chavchich M, Chalfein F, Kenangalem E, Kosaisavee V, Prasetyorini B, Piera KA, Barends M, Brockman A, Lek-Uthai U, Anstey NM, Tjitra E, Nosten F, Cheng Q, Price RN. Chloroquine resistant Plasmodium vivax: In vitro characterisation and association with molecular polymorphisms. PLoS One 2007; 2: e1089. https://doi.org/10.1371/journal.pone.0001089
  6. Brega S, Meslin B, de Monbrison F, Severini C, Gradoni L, Udomsangpetch R, Sutanto I, Peyron F, Picot S. Identification of the Plasmodium vivax mdr-like gene (pvmdr1) and analysis of single-nucleotide polymorphisms among isolates from different areas of endemicity. J Infect Dis 2005; 191: 272-277. https://doi.org/10.1086/426830
  7. Tjitra E, Baker J, Suprianto S, Cheng Q, Anstey NM. Therapeutic efficacies of artesunate-sulfadoxine-pyrimethamine and chloroquine-sulfadoxine-pyrimethamine in vivax malaria pilot studies: Relationship to Plasmodium vivax dhfr mutations. Antimicrob Agents Chemother 2002; 46: 3947-3953. https://doi.org/10.1128/AAC.46.12.3947-3953.2002
  8. de Pecoulas PE, Tahar R, Ouatas T, Mazabraud A, Basco LK. Sequence variations in the Plasmodium vivax dihydrofolate reductase-thymidylate synthase gene and their relationship with pyrimethamine resistance. Mol Biochem Parasitol 1998; 92: 265-273. https://doi.org/10.1016/S0166-6851(97)00247-8
  9. Imwong M, Pukrittakayamee S, Looareesuwan S, Pasvol G, Poirreiz J, White NJ, Snounou G. Association of genetic mutations in Plasmodium vivax dhfr with resistance to sulfadoxine-pyrimethamine: geographical and clinical correlates. Antimicrob Agents Chemother 2001; 45: 3122-3127. https://doi.org/10.1128/AAC.45.11.3122-3127.2001
  10. Korsinczky M, Fischer K, Chen N, Baker J, Rieckmann K, Cheng Q. Sulfadoxine resistance in Plasmodium vivax is associated with a specific amino acid in dihydropteroate synthase at the putative sulfadoxine-binding site. Antimicrob Agents Chemother 2004; 48: 2214-2222. https://doi.org/10.1128/AAC.48.6.2214-2222.2004
  11. Phillips EJ, Keystone JS, Kain KC. Failure of combined chloroquine and high-dose primaquine therapy for Plasmodium vivax malaria acquired in Guyana, South America. Clin Infect Dis 1996; 23: 1171-1173. https://doi.org/10.1093/clinids/23.5.1171
  12. Imwong M, Pukrittayakamee S, Cheng Q, Moore C, Looareesuwan S, Snounou G, White NJ, Day NP. Limited polymorphism in the dihydropteroate synthetase gene (dhps) of Plasmodium vivax isolates from Thailand. Antimicrob Agents Chemother 2005; 49: 4393-4395. https://doi.org/10.1128/AAC.49.10.4393-4395.2005
  13. Marfurt J, de Monbrison F, Brega S, Barbollat L, Müller I, Sie A, Goroti M, Reeder JC, Beck HP, Picot S, Genton B. Molecular markers of in vivo Plasmodium vivax resistance to amodiaquine plus sulfadoxine-pyrimethamine: mutations in pvdhfr and pvmdr1. J Infect Dis 2008; 198: 409-417. https://doi.org/10.1086/589882
  14. Sá JM, Nomura T, Neves J, Baird JK, Wellems TE, del Portillo HA. Plasmodium vivax: allele variants of the mdr1 gene do not associate with chloroquine resistance among isolates from Brazil, Papua, and monkey-adapted strains. Exp Parasitol 2005; 109: 256-259. https://doi.org/10.1016/j.exppara.2004.12.005
  15. Nomura T, Carlton JM, Baird JK, del Portillo HA, Fryauff DJ, Rathore D, Fidock DA, Su X, Collins WE, McCutchan TF, Wootton JC, Wellems TE. Evidence for different mechanisms of chloroquine resistance in 2 Plasmodium species that cause human malaria. J Infect Dis 2001; 183: 1653-1661. https://doi.org/10.1086/320707
  16. Lu F, Gao Q, Zhou H, Cao J, Wang W, Lim CS, Na S, Tsuboi T, Han ET. Molecular test for vivax malaria with loop-mediated isothermal amplification method in central China. Parasitol Res 2012; 110: 2439-2444. https://doi.org/10.1007/s00436-011-2783-8
  17. Miao M, Yang Z, Cui L, Ahlum J, Huang Y. Different allele prevalence in the dihydrofolate reductase and dihydropteroate synthase genes in Plasmodium vivax populations from China. Am J Trop Med Hyg 2010; 83: 1206-1211. https://doi.org/10.4269/ajtmh.2010.10-0259
  18. Chen JS, Zhang KR, Geng ZW. Clinical observation on the in vivo sensitivity of Plasmodium vivax to pyrimethamine in Kaifeng District, Henan Province. Henan J Prev Med 1977; 51-56 (in Chinese).
  19. Shen JQ, Hu XS. Comparison of efficacy between long-term oral administration of pyrimethamine and antimalarial pill 3. Railway Med J 1978; 2: 90-91 (in Chinese).
  20. Hastings MD, Sibley CH. Pyrimethamine and WR99210 exert opposing selection on dihydrofolate reductase from Plasmodium vivax. Proc Natl Acad Sci USA 2002; 99: 13137-13141. https://doi.org/10.1073/pnas.182295999
  21. Hawkins VN, Joshi H, Rungsihirunrat K, Na-Bangchang K, Sibley CH. Antifolates can have a role in the treatment of Plasmodium vivax. Trends Parasitol 2007; 23: 213-222. https://doi.org/10.1016/j.pt.2007.03.002
  22. Yang XM, Yang MQ, Huang JW. Clinical research of the sensitivity of Plasmodium vivax to chloroquine. Chinese J Parasitol Parasit Dis 1996; 9: 226-227 (in Chinese).
  23. Imwong M, Pukrittayakamee S, Pongtavornpinyo W, Nakeesathit S, Nair S, Newton P, Nosten F, Anderson TJ, Dondorp A, Day NP, White NJ. Gene amplification of the multidrug resistance 1 gene of Plasmodium vivax isolates from Thailand, Laos, and Myanmar. Antimicrob Agents Chemother 2008; 52: 2657-2659. https://doi.org/10.1128/AAC.01459-07
  24. Hastings MD, Maguire JD, Bangs MJ, Zimmerman PA, Reeder JC, Baird JK, Sibley CH. Novel Plasmodium vivax dhfr alleles from the Indonesian Archipelago and Papua New Guinea: association with pyrimethamine resistance determined by a Saccharomyces cerevisiae expression system. Antimicrob Agents Chemother 2005; 49: 733-740. https://doi.org/10.1128/AAC.49.2.733-740.2005
  25. Auliff A, Wilson DW, Russell B, Gao Q, Chen N, Anh le N, Maguire J, Bell D, O'Neil MT, Cheng Q. Amino acid mutations in Plasmodium vivax DHFR and DHPS from several geographical regions and susceptibility to antifolate drugs. Am J Trop Med Hyg 2006; 75: 617-621.
  26. Rungsihirunrat K, Na-Bangchang K, Hawkins VN, Mungthin M, Sibley CH. Sensitivity to antifolates and genetic analysis of Plasmodium vivax isolates from Thailand. Am J Trop Med Hyg 2007; 76: 1057-1065.
  27. Hastings MD, Porter KM, Maguire JD, Susanti I, Kania W, Bangs MJ, Sibley CH, Baird JK. Dihydrofolate reductase mutations in Plasmodium vivax from Indonesia and therapeutic response to sulfadoxine plus pyrimethamine. J Infect Dis 2004; 189: 744-750. https://doi.org/10.1086/381397
  28. Lu F, Lim CS, Nam DH, Kim K, Lin K, Kim TS, Lee HW, Chen JH, Wang Y, Sattabongkot J, Han ET. Mutations in the antifolate-resistance-associated genes dihydrofolate reductase and dihydropteroate synthase in Plasmodium vivax isolates from malaria-endemic countries. Am J Trop Med Hyg 2010; 83: 474-479. https://doi.org/10.4269/ajtmh.2010.10-0004
  29. Brega S, de Monbrison F, Severini C, Udomsangpetch R, Sutanto I, Ruckert P, Peyron F, Picot S. Real-time PCR for dihydrofolate reductase gene single-nucleotide polymorphisms in Plasmodium vivax isolates. Antimicrob Agents Chemother 2004; 48: 2581-2587. https://doi.org/10.1128/AAC.48.7.2581-2587.2004
  30. Sibley CH, Hyde JE, Sims PF, Plowe CV, Kublin JG, Mberu EK, Cowman AF, Winstanley PA, Watkins WM, Nzila AM. Pyrimethamine-sulfadoxine resistance in Plasmodium falciparum: what next? Trends Parasitol 2001; 17: 582-588. https://doi.org/10.1016/S1471-4922(01)02085-2
  31. Menegon M, Majori G, Severini C. Genetic variations of the Plasmodium vivax dihydropteroate synthase gene. Acta Trop 2006; 98: 196-199. https://doi.org/10.1016/j.actatropica.2006.03.003
  32. Hawkins VN, Suzuki SM, Rungsihirunrat K, Hapuarachchi HC, Maestre A, Na-Bangchang K, Sibley CH. Assessment of the origins and spread of putative resistance-conferring mutations in Plasmodium vivax dihydropteroate synthase. Am J Trop Med Hyg 2009; 81: 348-355.
  33. Lu F, Lim CS, Nam DH, Kim K, Lin K, Kim TS, Lee HW, Chen JH, Wang Y, Sattabongkot J, Han ET. Genetic polymorphism in pvmdr1 and pvcrt-o genes in relation to in vitro drug susceptibility of Plasmodium vivax isolates from malaria-endemic countries. Acta Trop 2011; 117: 69-75. https://doi.org/10.1016/j.actatropica.2010.08.011
  34. Huang F, Zhou S, Zhang S, Li W, Zhang H. Monitoring resistance of Plasmodium vivax: point mutations in dihydrofolate reductase gene in isolates from Central China. Parasit Vectors 2011; 4: 80. https://doi.org/10.1186/1756-3305-4-80

피인용 문헌

  1. N-Terminal Plasmodium vivax Merozoite Surface Protein-1, a Potential Subunit for Malaria Vivax Vaccine vol.2013, pp.None, 2012, https://doi.org/10.1155/2013/965841
  2. In vitro chloroquine resistance for Plasmodium vivax isolates from the Western Brazilian Amazon vol.12, pp.None, 2012, https://doi.org/10.1186/1475-2875-12-226
  3. Prevalence of drug resistance associated mutations in Plasmodium vivax against sulphadoxine-pyrimethamine in southern Pakistan vol.12, pp.None, 2012, https://doi.org/10.1186/1475-2875-12-261
  4. High levels of IgG3 anti ICB2-5 in Plasmodium vivax -infected individuals who did not develop symptoms vol.12, pp.None, 2012, https://doi.org/10.1186/1475-2875-12-294
  5. Prevalence and patterns of antifolate and chloroquine drug resistance markers in Plasmodium vivax across Pakistan vol.12, pp.None, 2013, https://doi.org/10.1186/1475-2875-12-310
  6. Blood Stage of Plasmodium vivax in Central China Is Still Susceptible to Chloroquine Plus Primaquine Combination Therapy vol.89, pp.1, 2012, https://doi.org/10.4269/ajtmh.12-0683
  7. Molecular surveillance of pvdhfr , pvdhps , and pvmdr-1 mutations in Plasmodium vivax isolates from Yunnan and Anhui provinces of China vol.13, pp.None, 2012, https://doi.org/10.1186/1475-2875-13-346
  8. Polymorphisms in chloroquine resistance-associated genes in Plasmodium vivax in Ethiopia vol.14, pp.None, 2015, https://doi.org/10.1186/s12936-015-0625-3
  9. Low prevalence of dihydro folate reductase ( dhfr ) and dihydropteroate synthase ( dhps ) quadruple and quintuple mutant alleles associated with SP resistance in Plasmodium vivax isolates of West Be vol.15, pp.None, 2012, https://doi.org/10.1186/s12936-016-1445-9
  10. Molecular Evidence of Drug Resistance in Asymptomatic Malaria Infections, Myanmar, 2015 vol.23, pp.3, 2017, https://doi.org/10.3201/eid2303.161363
  11. Clinical and molecular surveillance of drug resistant vivax malaria in Myanmar (2009–2016) vol.16, pp.None, 2012, https://doi.org/10.1186/s12936-017-1770-7
  12. Drug resistance genes: pvcrt - o and pvmdr - 1 polymorphism in patients from malaria endemic South Western Coastal Region of India vol.17, pp.None, 2012, https://doi.org/10.1186/s12936-018-2188-6
  13. Simultaneous detection of Plasmodium vivax dhfr , dhps , mdr1 and crt - o resistance-associated mutations in the Colombian Amazonian region vol.17, pp.None, 2018, https://doi.org/10.1186/s12936-018-2286-5
  14. Presence of novel triple mutations in the pvdhfr from Plasmodium vivax in Mangaluru city area in the southwestern coastal region of India vol.17, pp.None, 2018, https://doi.org/10.1186/s12936-018-2316-3
  15. Molecular detection of drug resistant malaria in Southern Thailand vol.18, pp.1, 2019, https://doi.org/10.1186/s12936-019-2903-y
  16. Molecular Detection of Antimalarial Drug Resistance in Plasmodium vivax from Returned Travellers to NSW, Australia during 2008–2018 vol.9, pp.2, 2020, https://doi.org/10.3390/pathogens9020101
  17. An unlabelled probe-based real time PCR and modified semi-nested PCR as molecular tools for analysis of chloroquine resistant Plasmodium vivax isolates from Afghanistan vol.19, pp.1, 2012, https://doi.org/10.1186/s12936-020-03323-4
  18. Molecular Surveillance and Ex Vivo Drug Susceptibilities of Plasmodium vivax Isolates From the China-Myanmar Border vol.11, pp.None, 2012, https://doi.org/10.3389/fcimb.2021.738075