DOI QR코드

DOI QR Code

Immunological Mechanisms by Which Concomitant Helminth Infections Predispose to the Development of Human Tuberculosis

  • Mendez-Samperio, Patricia (Departamento de Inmunologia, Escuela Nacional de Ciencias Biologicas, IPN, Prol. Carpio y Plan de Ayala)
  • Received : 2012.04.13
  • Accepted : 2012.07.02
  • Published : 2012.12.17

Abstract

Helminthic infections afflict over 1.5 billion people worldwide, while Mycobacterium tuberculosis infects one third of the world's population, resulting in 2 million deaths per year. Although tuberculosis and helminthic infections coexist in many parts of the world, and it has been demonstrated that the T-helper 2 and T-regulatory cell responses elicited by helminths can affect the ability of the host to control mycobacterial infection, it is still unclear whether helminth infections in fact affect tuberculosis disease. In this review article, current progress in the knowledge about the immunomodulation induced by helminths to diminish the protective immune responses to bacille Calmette-Guerin vaccination is reviewed, and the knowledge about the types of immune responses modulated by helminths and the consequences for tuberculosis are summarized. In addition, recent data supporting the significant reduction of both M. tuberculosis antigen-specific Toll-like receptor (TLR) 2 and TLR9 expression, and pro-inflammatory cytokine responses to TLR2 and TLR9 ligands in individuals with M. tuberculosis and helminth co-infection were discussed. This examination will allow to improve understanding of the immune responses to mycobacterial infection and also be of great relevance in combating human tuberculosis.

Keywords

References

  1. World Health Organization. Global Tuberculosis Control-Surveillance, Planning, Financing. Geneva, Switzerland. WHO. 2008, p 294.
  2. Gandhi NR, Moll A, Sturm AW, Pawinski R, Govender T, Lalloo U, Zeller K, Andrews J, Friedland G. Extensively drug-resistant tuberculosis as a cause of death in patients co-infected with tuberculosis and HIV in a rural area of South Africa. Lancet 2006; 368: 1575-1580. https://doi.org/10.1016/S0140-6736(06)69573-1
  3. Colditz GA, Brewer TF, Berkey CS, Wilson ME, Burdick E, Fineberg HV, Mosteller F. Efficacy of BCG vaccine in the prevention of tuberculosis. Meta-analysis of the published literature. JAMA 1994; 271: 698-702. https://doi.org/10.1001/jama.1994.03510330076038
  4. Trunz BB, Fine P, Dye C. Effect of BCG vaccination on childhood tuberculous meningitis and miliary tuberculosis worldwide: A meta-analysis and assessment of cost- effectiveness. Lancet 2006; 367: 1173-1180. https://doi.org/10.1016/S0140-6736(06)68507-3
  5. Maizels RM, Yazdanbakhsh M. Immune regulation by helminth parasites: Cellular and molecular mechanisms. Nat Rev Immunol 2003; 3: 733-744. https://doi.org/10.1038/nri1183
  6. Flynn JL, Chan J. Immunology of tuberculosis. Annu Rev Immunol 2001; 19: 93-129. https://doi.org/10.1146/annurev.immunol.19.1.93
  7. Rook GA, Dheda K, Zumla A. Immune responses to tuberculosis in developing countries: Implications for new vaccines. Nat Rev Immunol 2005; 5: 661-667. https://doi.org/10.1038/nri1666
  8. Gonzalez-Juarrero M, Turner OC, Turner J, Marietta P, Brooks JV, Orme IM. Temporal and spatial arrangement of lymphocytes within lung granulomas induced by aerosol infection with Mycobacterium tuberculosis. Infect Immun 2001; 69: 1722-1728. https://doi.org/10.1128/IAI.69.3.1722-1728.2001
  9. Kaufmann SH. Protection against tuberculosis: cytokines, T cells, and macrophages. Ann Rheum Dis 2002; 61: ii54-ii58. https://doi.org/10.1136/ard.61.suppl_2.ii54
  10. Giacomini E, Iona E, Ferroni L, Miettinen M, Fattorini L, Orefici G, Julkunen I, Coccia EM. Infection of human macrophages and dendritic cells with Mycobacterium tuberculosis induces a differential cytokine gene expression that modulates T cell response. J Immunol 2001;166: 7033-7041. https://doi.org/10.4049/jimmunol.166.12.7033
  11. Shams H, Wizel B, Weis SE, Samten B, Barnes PF. Contribution of CD8(+) T cells to gamma interferon production in human tuberculosis. Infect Immun 2001; 69: 3497- 3501. https://doi.org/10.1128/IAI.69.5.3497-3501.2001
  12. Serbina NV, Flynn JL. CD8(+) T cells participate in the memory immune response to Mycobacterium tuberculosis. Infect Immun 2001; 69: 4320-4328. https://doi.org/10.1128/IAI.69.7.4320-4328.2001
  13. Dieli F, Caccamo N, Meraviglia S, Ivanyi J, Sireci G, Bonanno CT, Ferlazzo V, La Mendola C, Salerno A. Reciprocal stimulation of gammadelta T cells and dendritic cells during the anti-mycobacterial immune response. Eur J Immunol 2004; 34: 3227-3235. https://doi.org/10.1002/eji.200425368
  14. Dieli F, Ivanyi J, Marsh P, Williams A, Naylor I, Sireci G, Caccamo N, Di Sano C, Salerno A. Characterization of lung gamma delta T cells following intranasal infection with Mycobacterium bovis bacillus Calmette-Guerin. J Immunol 2003; 170: 463-469. https://doi.org/10.4049/jimmunol.170.1.463
  15. Ordway DJ, Pinto L, Costa L, Martins M, Leandro C, Viveiros M, Amaral L, Arroz MJ, Ventura FA, Dockrell HM. Gamma delta T cell responses associated with the development of tuberculosis in health care workers. FEMS Immunol Med Microbiol 2005; 43: 339-350. https://doi.org/10.1016/j.femsim.2004.09.005
  16. Cooper AM, Khader SA. The role of cytokines in the initiation, expansion, and control of cellular immunity to tuberculosis. Immunol Rev 2008; 226: 191-204. https://doi.org/10.1111/j.1600-065X.2008.00702.x
  17. Méndez-Samperio P. Role of interleukin-12 family cytokines in the cellular response to mycobacterial disease. Int J Infect Dis 2010; 14: e366-e371.
  18. Korbel DS, Schneider BE, Schaible UE. Innate immunity in tuberculosis: Myths and truth. Microbes Infect 2008; 10: 995-1004. https://doi.org/10.1016/j.micinf.2008.07.039
  19. Bafica A, Scanga CA, Feng CG, Leifer C, Cheever A, Sher A. TLR9 regulates Th1 responses and cooperates with TLR2 in mediating optimal resistance to Mycobacterium tuberculosis. J Exp Med 2005; 202: 1715-1724. https://doi.org/10.1084/jem.20051782
  20. Stewart GR, Boussinesq M, Coulson T, Elson L, Nutman T, Bradley JE. Onchocerciasis modulates the immune response to mycobacterial antigens. Clin Exp Immunol 1999; 117: 517-523. https://doi.org/10.1046/j.1365-2249.1999.01015.x
  21. Prost A, Nebout M, Rougemont A. Lepromatous leprosy and onchocerciasis. Br Med J 1979; 1: 589-590.
  22. Elias D, Wolday D, Akuffo H, Petros B, Bronner U, Britton S. Effect of deworming on human T cell responses to mycobacterial antigens in helminth-exposed individuals before and after bacille Calmette-Guerin (BCG) vaccination. Clin Exp Immunol 2001; 123: 219-225. https://doi.org/10.1046/j.1365-2249.2001.01446.x
  23. Salgame P. Host innate and Th1 responses and the bacterial factors that control Mycobacterium tuberculosis infection. Curr Opin Immunol 2005; 17: 374-380. https://doi.org/10.1016/j.coi.2005.06.006
  24. Oldenhove G, de Heusch M, Urbain-Vansanten G, Urbain J, Maliszewski C, Leo O, Moser M. $CD4^+$ $CD25^+$ regulatory T cells control T helper cell type 1 responses to foreign antigens induced by mature dendritic cells in vivo. J Exp Med 2003; 198: 259-266. https://doi.org/10.1084/jem.20030654
  25. Resende Co T, Hirsch CS, Toossi Z, Dietze R, Ribeiro-Rodrigues R. Intestinal helminth co-infection has a negative impact on both anti-Mycobacterium tuberculosis immunity and clinical response to tuberculosis therapy. Clin Exp Immunol 2007; 147: 45-52.
  26. Sacco R, Hagen M, Sandor M, Weinstock JV, Lynch RG. Established T(H1) granulomatous responses induced by active Mycobacterium avium infection switch to T(H2) following challenge with Schistosoma mansoni. Clin Immunol 2002; 104: 274-281. https://doi.org/10.1006/clim.2002.5263
  27. Babu S, Bhat SQ, Kumar NP, Jayantasri S, Rukmani S, Kumaran P, Gopi PG, Kolappan C, Kumaraswami V, Nutman TB. Human type 1 and 17 responses in latent tuberculosis are modulated by coincident filarial infection through cytotoxic T lymphocyte antigen-4 and programmed death-1. J Infect Dis 2009; 200: 288-298. https://doi.org/10.1086/599797
  28. Elias D, Britton S, Aseffa A, Engers H, Akuffo H. Poor immunogenicity of BCG in helminth infected population is associated with increased in vitro TGF-beta production. Vaccine 2008; 26: 3897-3902. https://doi.org/10.1016/j.vaccine.2008.04.083
  29. Bundy D, Sher A, Michael E. Good worms or bad worms: Do worm infections affect the epidemiological patterns of other diseases? Parasitol Today 2000; 16: 273-274. https://doi.org/10.1016/S0169-4758(00)01689-6
  30. Filipe-Santos O, Bustamante J, Chapgier A, Vogt G, de Beaucoudrey L, Feinberg J, Jouanguy E, Boisson-Dupuis S, Fieschi C, Picard C, Casanova JL. Inborn errors of IL-12/23-and IFN-gamma-mediated immunity: Molecular, cellular, and clinical features. Semin Immunol 2006; 18: 347-361. https://doi.org/10.1016/j.smim.2006.07.010
  31. Metzger DW, McNutt RM, Collins JT, Buchanan JM, Van Cleave VH, Dunnick WA. Interleukin-12 acts as an adjuvant for humoral immunity through interferon-gamma- dependent and -independent mechanisms. Eur J Immunol 1997; 27: 1958-1965. https://doi.org/10.1002/eji.1830270820
  32. Elias D, Akuffo H, Pawlowski A, Haile M, Schön T, Britton S. Schistosoma mansoni infection reduces the protective efficacy of BCG vaccination against virulent Mycobacterium tuberculosis. Vaccine 2005; 23: 1326-1334. https://doi.org/10.1016/j.vaccine.2004.09.038
  33. Romagnani S. Type 1 T helper and type 2 T helper cells: Functions, regulation and role in protection and disease. Int J Clin Lab Res 1991; 21: 152-158.
  34. Boitelle A, Scales HE, Di Lorenzo C, Devaney E, Kennedy MW, Garside P, Lawrence CE. Investigating the impact of helminth products on immune responsiveness using a TCR transgenic adoptive transfer system. J Immunol 2003; 171: 447-454. https://doi.org/10.4049/jimmunol.171.1.447
  35. Borkow G, Weisman Z, Leng Q, Stein M, Kalinkovich A, Wolday D, Bentwich Z. Helminths, human immunodeficiency virus and tuberculosis. Scand J Infect Dis 2001; 33: 568-571. https://doi.org/10.1080/00365540110026656
  36. Belkaid Y, Rouse BT. Natural regulatory T cells in infectious disease. Nat Immunol 2005; 6: 353-360.
  37. Erb KJ, Trujillo C, Fugate M, Moll H. Infection with the helminth Nippostrongylus brasiliensis does not interfere with efficient elimination of Mycobacterium bovis BCG from the lungs of mice. Clin Diagn Lab Immunol 2002; 9: 727-730.
  38. Frantz FG, Rosada RS, Turato WM, Peres CM, Coelho-Castelo AA, Ramos SG, Aronoff DM, Silva CL, Faccioli LH. The immune response to toxocariasis does not modify susceptibility to Mycobacterium tuberculosis infection in BALB/c mice. Am J Trop Med Hyg 2007; 77: 691-698.
  39. Elias D, Akuffo H, Thors C, Pawlowski A, Britton S. Low dose chronic Schistosoma mansoni infection increases susceptibility to Mycobacterium bovis BCG infection in mice. Clin Exp Immunol 2005; 139: 398-404. https://doi.org/10.1111/j.1365-2249.2004.02719.x
  40. Malhotra I, Mungai P, Wamachi A, Kioko J, Ouma JH, Kazura JW, King CL. Helminth- and bacillus Calmette-Guérin-induced immunity in children sensitized in utero to filariasis and schistosomiasis. J Immunol 1999; 162: 6843-6848.
  41. Markus MB, Fincham JE. Implications for neonatal HIV/AIDS and TB of sensitization in utero to helminths. Trends Parasitol 2001; 17:18.
  42. Elias D, Mengistu G, Akuffo H, Britton S. Are intestinal helminths risk factors for developing active tuberculosis? Trop Med Int Health 2006; 11: 551-558. https://doi.org/10.1111/j.1365-3156.2006.01578.x
  43. Tristao-Sa R, Ribeiro-Rodrigues R, Johnson LT, Pereira FE, Dietze R. Intestinal nematodes and pulmonary tuberculosis. Rev Soc Bras Med Trop 2002; 35: 533-555. https://doi.org/10.1590/S0037-86822002000500020
  44. Bentwich Z, Kalinkovich A, Weisman Z, Borkow G, Beyers N, Beyers AD. Can eradication of helminthic infections change the face of AIDS and tuberculosis? Immunol Today 1999; 20: 485-487. https://doi.org/10.1016/S0167-5699(99)01499-1
  45. Diniz LM, Zandonade E, Dietze R, Pereira FE, Ribeiro-Rodrigues R. Short report: do intestinal nematodes increase the risk for multibacillary leprosy? Am J Trop Med Hyg 2001; 65: 852-854. https://doi.org/10.4269/ajtmh.2001.65.852
  46. Venugopal PG, Nutman TB, Semnani RT. Activation and regulation of Toll-like receptors (TLRs) by helminth parasites. Immunol Res 2009; 43: 252-263. https://doi.org/10.1007/s12026-008-8079-0
  47. Napolitani G, Rinaldi A, Bertoni F, Sallusto F, Lanzavecchia A. Selected Toll-like receptor agonist combinations synergistically trigger a T helper type 1-polarizing program in dendritic cells. Nat Immunol 2005; 6: 769-776. https://doi.org/10.1038/ni1223
  48. Scanga CA, Bafica A, Feng CG, Cheever AW, Hieny S, Sher A. MyD88-deficient mice display a profound loss in resistance to Mycobacterium tuberculosis associated with partially impaired Th1 cytokine and nitric oxide synthase 2 expression. Infect Immun 2004; 72: 2400-2404. https://doi.org/10.1128/IAI.72.4.2400-2404.2004
  49. Babu S, Bhat SQ, Kumar NP, Anuradha R, Kumaran P, Gopi PG, Kolappan C, Kumaraswami V, Nutman TB. Attenuation of Toll-like receptor expression and function in latent tuberculosis by coexistent filarial infection with restoration following antifilarial chemotherapy. PLoS Negl Trop Dis 2009; 3: e489. https://doi.org/10.1371/journal.pntd.0000489
  50. Caparros E, Munoz P, Sierra-Filardi E, Serrano-Gomez D, Puig-Kroger A, Rodriguez-Fernandez JL, Mellado M, Sancho J, Zubiaur M, Corbi AL. DC-SIGN ligation on dendritic cells results in ERK and PI3K activation and modulates cytokine production. Blood 2006; 107: 3950-3958. https://doi.org/10.1182/blood-2005-03-1252
  51. Cervi L, MacDonald AS, Kane C, Dzierszinski F, Pearce EJ. Cutting edge: Dendritic cells copulsed with microbial and helminth antigens undergo modified maturation, segregate the antigens to distinct intracellular compartments, and concurrently induce microbe-specific Th1 and helminth-specific Th2 responses. J Immunol 2004; 172: 2016-2020. https://doi.org/10.4049/jimmunol.172.4.2016
  52. Talaat KR, Bonawitz RE, Domenech P, Nutman TB. Preexposure to live Brugia malayi microfilariae alters the innate response of human dendritic cells to Mycobacterium tuberculosis. J Infect Dis 2006; 193: 196-204. https://doi.org/10.1086/498912
  53. Jenkins SJ, Mountford AP. Dendritic cells activated with products released by schistosome larvae drive Th2-type immune responses, which can be inhibited by manipulation of CD40 costimulation. Infect Immun 2005; 73: 395-402. https://doi.org/10.1128/IAI.73.1.395-402.2005

Cited by

  1. Co-infection of tuberculosis and parasitic diseases in humans: a systematic review vol.6, pp.None, 2012, https://doi.org/10.1186/1756-3305-6-79
  2. Are Pregnant Women with Chronic Helminth Infections More Susceptible to Congenital Infections? vol.5, pp.None, 2014, https://doi.org/10.3389/fimmu.2014.00053
  3. Prevention of Type 1 diabetes through parasite infection vol.7, pp.6, 2012, https://doi.org/10.2217/imt.15.34
  4. Toll-like receptor signaling in parasitic infections vol.11, pp.6, 2015, https://doi.org/10.1586/1744666x.2015.1037286
  5. Molecular events by which dendritic cells promote Th2 immune protection in helmith infection vol.48, pp.10, 2012, https://doi.org/10.1080/23744235.2016.1194529
  6. Parasitismo intestinal y tuberculosis vol.65, pp.4, 2012, https://doi.org/10.15446/revfacmed.v65n4.55864
  7. Design, Synthesis and Biological Evaluation of Some Triazole Schiff’s Base Derivatives as Potential Antitubercular Agents vol.12, pp.None, 2012, https://doi.org/10.2174/1874104501812010048
  8. Insights on Blood Cytokines Production under Different In Vitro Mycobacterial Antigens in Tuberculosis Intestinal Parasites Co Infected Patients vol.8, pp.3, 2018, https://doi.org/10.4236/aim.2018.83011
  9. Intestinal parasites and HIV in Ethiopian tuberclosis patients: A systematic review and meta-analysis vol.93, pp.None, 2012, https://doi.org/10.1016/j.curtheres.2020.100603
  10. Helminth infections and immunosenescence: The friend of my enemy vol.133, pp.None, 2020, https://doi.org/10.1016/j.exger.2020.110852
  11. Fasciola hepatica coinfection modifies the morphological and immunological features of Echinococcus granulosus cysts in cattle vol.51, pp.1, 2020, https://doi.org/10.1186/s13567-020-00799-5