References
- Risch, H.A., Jain, M., Choi, N.W., Fodor, J.G., Pfeiffer, C.J., Howe, G.R., Harrison, L.W., Craib, K.J. and Miller, A.B. : Dietary factors and the incidence of cancer of the stomach. Am. J. Epidemiol, 122, 947-959 (1985).
- Lee, K.H., Kown, H.J., Chun, S.S., Kim, J.H., Cho, Y.J. and Cha, W.S. : Biological activities of extracts from phellinus linteus. J. Korean. Soc. Appl. Biol. Chem, 49, 298-303 (2006).
- Kim, S.W. and Kim, E.S. : Studies on the immunomodulating effect of polysaccharide extracted from Ganoderma lucidum on machrophage. J. Korean. Soc. Food. Sci. Nutr, 26, 148-153 (1997).
- Lee, M.K., Choi, G.P., Ryu, L.H., Lee, G.Y., Yu, C.Y. and Lee, H.Y. : Enhanced immune activity and cytotoxicity of Artemisia capillaris Thub. extracts against human cell lines. Korean. J. Med. Crop. Sci, 12, 36-42 (2004).
- Schaeffer, D.J. and Krylov, V.S. : Anti-HIV activity of extracts and compounds from algae and cyanobacteria, Ecotoxicol. Environ. Saf, 45, 208-227 (2000). https://doi.org/10.1006/eesa.1999.1862
- Dobashi, K., Nishino, T., Fujihara, M., and Nagumo, T. : Isolation and preliminary characterization of fucose-containing sulfated polysaccharides with blood -anticoagulant activity from the brown seaweed Hizikia fusiforme. Carbohydr. Res, 194, 315-320 (1989). https://doi.org/10.1016/0008-6215(89)85032-3
- Nishino, T., Nishioka, C., Ura, H. and Nagumo, T. : Isolation and partial characterization of a novel amino sugar-containing fucan vesiculosus fucoidan. Carbohydr. Res, 255, 213-214 (1994). https://doi.org/10.1016/S0008-6215(00)90980-7
- Aisa, Y., Miyakawa, Y., Nakazato, T., Shibata, H., Saito, K., Ikeda, Y. and Kizaki, M. : Fucoidan induces apoptosis of human HS-sultan cells accompanied by activation of caspase-3 and down-regulation of ERK pathways. Am. J. Hematol, 78, 7-14 (2005). https://doi.org/10.1002/ajh.20182
- Hyun, J.H., Kimg, S.C., Kang, J.I., Kim, M.K., Boo, H.J., Kwon, J.M., Koh, Y.S., Hyun, J.W., Park, D.B., Yoo, E.S. and Kang, H.K. : Apoptosis inducing activity of fucoidan in HCT-15 colon carcinoma cells. Biol. Pharm. Bull, 32, 1760-1764 (2009). https://doi.org/10.1248/bpb.32.1760
- Nagamine, T., Hayakawa, K., Kusakabe, T., Takada, H., Nakazato, K., Hisanaga, E. and Iha, M. : Inhibitory effect of fucoidan on Huh 7 hepatoma cells through down-regulation of CXCL12. Nutr. Cancer, 61, 340-347 (2009). https://doi.org/10.1080/01635580802567133
- Yamasaki-Miyamoto, Y., Yamasaki, M., Tachibana, Ha. and Yamada, K. : Fucoidan induces apoptosis through activation of caspase-8 on human breast cancer MCF-7 cells. J. Agric. Food. Chem, 57, 8677-8682 (2009). https://doi.org/10.1021/jf9010406
- Ko, E.J. and Joo, H.G. : Immunostimulatory effects of fucoidan on mouse splenocytes. Lab. Anim. Res, 25, 195-200 (2009).
- Yang, J.W., Yoon, S.Y., Oh, S.J., Kim, S.K. and Kang, K.W. : Bifunctional effects of fucoidan on the expression of inducible nitric oxide synthase. Biochem. Biophys. Res. Commun, 346, 345-350 (2006). https://doi.org/10.1016/j.bbrc.2006.05.135
- Maruyama, H., Tamauchi, H., Iizuka, Ma. and Nakano, T. : The role of NK cells in antitumor activity of dietary fucoidan from Undaria pinnatifida sporophylls. Planta. Med, 72, 1415-1417 (2006). https://doi.org/10.1055/s-2006-951703
- Kim, N.H. and Joo, H.G.: Immunostimulator effects of fucoidan on bone marrow-derived dendritic cells. Immunol. Lett, 115, 138-143 (2008). https://doi.org/10.1016/j.imlet.2007.10.016
- Hengrtner, M.O. : The biochemistry of apoptosis. Nature, 407, 770-777 (2000). https://doi.org/10.1038/35037710
- Hamsa, T.P. and Kuttan, G. : Evalution of the anti-inflammatory and anti-tumor effect of ipomoea obscura(L) and its mode of action through the inhibition of proinflammatory cytokines, nitric oxide and COX-2. Inflammation, 34, 171-183 (2011). https://doi.org/10.1007/s10753-010-9221-4
- Kang, N.S. and Sohn, E.H. : Immunomodulatory effects of fructus and semen from Rosa rugosa on macrophages. J. Korean. Plant. Res, 23, 399-405 (2010).
- Zhang, L., Zhu, Y., Lun, D., Yu, B. and Zhu, X. : Proteomic analysis of macrophages: a potential way to identify novel proteins associated with activation of macrophages for tumor cell killing. Cell. Mol. Immunol, 4, 359-367 (2007).
- Bodmer, J.L., Holler, N., Reynard, S., Vinciguerra, P., Schneider, P., Juo, P., Blenis, J. and Tschopp, J. : TRAIL receptor-2 signals apoptosis through FADD and caspase-8. Nat. Cell. Biol, 2, 241-243 (2000). https://doi.org/10.1038/35008667
- Kischkel, F.C., Lawrence, D.A., Chuntharapai, A., Schow, P., Kim, K.J. and Ashkenazi, A. : Apo2L/TRAIL-dependent recruitment of endogenous FADD and caspase-8 to death receptors 4 and 5. Immunity, 12, 611-620 (2000). https://doi.org/10.1016/S1074-7613(00)80212-5
- Cohen, G.M. : Caspase: the executioners of apoptosis. Biochem. J, 326, 1-16 (1997).
- Li, H., Zhu, H., Xu, C.J. and Yuan, J. : Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell, 94, 491-501 (1998). https://doi.org/10.1016/S0092-8674(00)81590-1
- Slee, E.A., Harte, M.T., Kluck, R.M., Wolf, B.B., Casiano, C.A., Newmever, D.D., Wang, H.G., Reed, J.C., Nicholson, D.W., Alnemri, E.S., Green, D.R. and Martin, S.J. : Ordering the cytochrome c-initiated caspase cascade: hierarchical activation of caspase-2, -3, -6, -7, -8 and -10 in a caspase-9 dependent manner. J. Cell. Biol, 144, 281-292 (1999). https://doi.org/10.1083/jcb.144.2.281
- Hockenbery, D., Nunez, G., Milliman, C., Schreiber, R.D. and Korsmeyer, S.J. : Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature, 348, 334-336 (1990) https://doi.org/10.1038/348334a0
- Deveraux, Q.L. and Reed, J.C. : IAP family proteins-suppressors of apoptosis. Genes. Dev, 13, 1899-1911 (1999) https://doi.org/10.1101/gad.13.15.1899
- Carnero, A. : The PKB/AKT pathway in cancer. Curr. Pharm, 277, 34-44 (2010)
- Osaki, M., Oshimura, M. and Ito, H. : PI3K-Akt pathway: its functions and altherations in human cancer. Apoptosis, 9, 667-676 (2004) https://doi.org/10.1023/B:APPT.0000045801.15585.dd
- Kim, E.J., Park, S.Y., Lee, J.Y. and Park, J.H. : Fucoidan present in brown algae induces apoptosis of human colon cancer cells. BMC. Gastroenterol, 10, 96-107 (2010) https://doi.org/10.1186/1471-230X-10-96
- Jung, J.I., Lim, S.S., Choi, H.J., Cho, H.J., Shin, H.K., Kim, E.J., Chung, W.Y., Park, K.K. and Park, J.H. : Iosliquiritigenin induces apoptosis by depolarizing mitochondrial membranes in prostate cancer cells. J. Nutr. Biochem, 17, 689-696 (2006). https://doi.org/10.1016/j.jnutbio.2005.11.006
- Palmer, R.M., Ferrige, A.G. and Moncada, S. : Nitric oxide release accounts for the biological activity of endotheliumderived relaxing factor. Nature, 327, 524-526 (1987) https://doi.org/10.1038/327524a0
- Moncada, S. and Higgs, A. : The L-arginine nitric oxide pathway. N. Engl. J. Med, 329, 2002-2012 (1993) https://doi.org/10.1056/NEJM199312303292706
-
Yang, W.W. and Krukoff, T.L. : Nitric oxide regulates body temperature, neuronal activation and interleukin-1
${\beta}$ gene expression in the hypothalamic paraventricular nucleus in response to immune stress. Neuropharmacology, 39, 2075-2089 (2000). https://doi.org/10.1016/S0028-3908(00)00054-X - Hang, D., Choi, H.S., Kang, S.C., Kim, K.R., Sohn, E.S., Kim, M.H., Pyo, S. and Son, E. : Effects of fucoidan on NO production and phagocytosis of macrophages and the proliferation of neuron cells. J. Food. Sci. Nutr, 10, 344-348 (2005). https://doi.org/10.3746/jfn.2005.10.4.344
- Strieter, R., Kunkel, S. and Bone, R. : Role of tumor necrosis factor-alpha in disease states and inflammation. Crit. Car. Med, 21, 447-463 (1993). https://doi.org/10.1097/00003246-199303000-00024
- Adams, D.O. and Hamilton, T.A. : The cell biology of macrophage activation. Annu. Rev. Immunol, 2, 283-318 (1984). https://doi.org/10.1146/annurev.iy.02.040184.001435
- Nathan, C.F. : Secretory products of macrophages. J. Clin. Invest, 79, 319-326 (1987). https://doi.org/10.1172/JCI112815
- Vishvakarma, N.K. and Slingh, S.M. : Immunopotentiating effect of proton pump inhibitor pantoprazole in a lymphoma-bearing murine host: Implication in antitumor activation of tumorassociated macrophages. Immunol. Lett, 134, 823-92 (2010).
- Evans, V.G. : Multiple pathways to apoptosis. Cell. Biol. Int, 17, 461-476 (1993). https://doi.org/10.1006/cbir.1993.1087
- Donovan, M. and Cotter, T.G. : Control of mitochondrial integrity by Bcl-2 family members and caspase-independent cell death. Biochim. Biophys. Acta, 1644, 133-147 (2004). https://doi.org/10.1016/j.bbamcr.2003.08.011
- Rosse, T., Olivier, R., Monney, L., Rager, M., Conus, S., Fellay, I., Jansen, B. and Bomer, C. : Bcl-2 prolongs cell survival after Bax-induced release of cytochrome c. Nature, 391, 496-499 (1998). https://doi.org/10.1038/35160
- Li, P., Nijhawan, D., Budihardjo, I., Srinivasula, S.M., Ahmad, M., Alnemri, E.S. and Wang, X. : Cytochrome c and ATPdependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell, 91, 479-489 (1997). https://doi.org/10.1016/S0092-8674(00)80434-1
- Du, C., Fang, M., Li, Y., Li, L. and Wang, X. : Smac, a mitochondrial protein that promotes cytochrom c-dependent caspase activation by eliminating IAP inhibition. Cell, 102, 33-42 (2002).
- Yoeli-Lemer, M., Yiu, G.K., Rabinovitz, I., Erhardt, P., Jauliac, S. and Toker, A. : Akt blocks breast cancer cell motility and invasion through the transcription factor NFAT. Mol. Cell, 20, 539-550 (2005). https://doi.org/10.1016/j.molcel.2005.10.033
- Okoshi, R.T., Ozaki, H., Yamamoto, K., Ando, N., Koida, S., Ono, T., Koda, T., Kamijo, A., Nakagawara, A. and Kizaki, H.: Activation of AMP-activated protein kinase induces p53-dependent apoptotic cell death in response to energetic stress. J. Biol. Chem, 283, 3979-3987 (2008). https://doi.org/10.1074/jbc.M705232200