A Study for Establishing Key Performance Indicators of R&D Departments

Nam Wook Cho* · Tae-Sung Kim***

*Department of Industrial and Information Systems Engineering, Seoul National University of Science and Technology **School of Industrial Engineering, Kumoh National Institute of Technology

연구개발 부문의 핵심성과지표 개발 사례연구

조남욱* · 김태성**[†]

*서울과학기술대학교 글로벌융합산업공학과 **금오공과대학교 산업공학부

In this paper, quantitative and systematic procedures for establishing Key Performance Indicators (KPI's) of R&D departments are presented. The proposed methodology is composed of 4 steps : 1) identification of critical success factors, 2) identification of potential KPI's, 3) determination of KPI's and 4) monitoring and execution. A Strategy Map has been presented to better align KPI's with a company's competitive strategies. Also, Analytical Hierarchy Planning (AHP) is used to determine weights of KPI's and Data Envelopment Analysis (DEA) is used to analyze the effectiveness of R&D departments. To demonstrate its validity of the proposed method, it has been applied to the R&D divisions of a semiconductor company.

Keywords : Key Performance Indicator, Analytical Hierarchy Planning, Data Envelopment Analysis

1. 서 론

급변하는 경영환경 속에서 지속적인 경쟁력을 유지하 기 위하여 기업들은 다양한 경영혁신 기법을 도입하고 있 다. 6시그마, 균형성과지표(Balanced Scorecard; BSC), 실 시간 기업(Real Time Enterprise; RTE) 등이 대표적인 경영 혁신 방법론이다[7]. 최근 유행하는 경영혁신 방법론들은 비록 명칭과 철학, 목적이 다르지만 기업의 현 상황을 정 확하고 효과적으로 측정하는 핵심성과지표(Key Performance Indicator; KPI)의 체계적인 수립의 중요성을 강조하고 있다.

기업들이 핵심 성과지표의 수립에 관심이 높은 이유 는 다음과 같다[10]. 첫째, 활동성과에 대한 투명성의 요 구이다. 활동성과에 대한 투명성 제고는 기업 단위뿐만 아니라 기업 내부의 임원 조직, 팀 조직 단위, 그리고 개 인 단위까지 확대 되고 있다. 둘째, 성과주의 부상 때문 이다. 그간 기업들은 성과평가의 중요성에 대해서 큰 관 심을 기울이지 않았으나 최근 인사 관리 체제가 연공서 열 위주에서 성과 위주로 바뀜에 따라 성과지표의 중요 성이 강조되고 있다. 성과지표가 관심을 끌고 있는 또 다 른 이유는 성과지표가 구성원의 동기 부여를 위해 필요 하기 때문이다. 기업의 전략 방향과 일치하며 효과적인

Received 14 July 2012; Finally Revised 6 September 2012; Accepted 6 November 2012

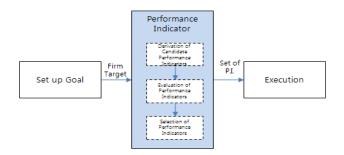
^{*} Corresponding Author : tkim@kumoh.ac.kr

^{© 2012} Society of Korea Industrial and Systems Engineering This is Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited(http://creativecommons.org/licenses/by-nc/3.0).

성과지표는 기업 전체의 발전을 도모하고 구성원들의 동 기를 자극하게 되지만, 바람직하지 않은 성과지표는 구 성원들의 사고와 행동의 초점을 잘못된 방향으로 유도하 게 되어 의욕을 저하시키게 되고 결과적으로 기업 전체 의 성과 저하로 나타난다.

Kaplan and Norton[20]에 의해 성과관리 도구이자 평 가기법의 하나인 균형성과지표가 제시된 이후 최근 10년 간 균형성과지표에 대한 관심이 높아짐에 따라 균형 성 과지표 관점에서의 성과 지표 수립에 관한 많은 연구가 이루어졌다[1, 11].

분야별로 살펴보면 공공서비스의 경우 다양한 영역에 서 여러 사례가 보고된 바 있다. 행정부처를 중심으로 다 양한 사례연구가 보고된 바 있으며[3, 13], 도서관 등의 공공서비스를 중심으로 성과지표 개발사례가 보고되었다 [2, 4, 6]. 또한, 의료[1, 12], 국방[9] 등의 영역에서 성과 지표 개발에 관한 연구가 진행되었다. 하지만 최근 일부 에서는 행정서비스에 대한 균형성과지표 접근법에 대한 한계점이 지적되기도 하였다[11].


한편 기업경영 관점의 성과지표 개발연구도 여러 분 야에서 보고된 바 있으나 공공서비스 분야에 비해서는 다소 미흡한 측면이 있다. 공급사슬관리 관점에서 물류 의 성과지표를 위한 연구가 이루어졌으며[8, 10], 정보시 스템 관점에서의 성과지표 연구도 이루어지고 있다[16]. 산업별로 살펴보면, 건설산업과 레저 산업의 연구가 보 고된 바 있다[5, 14, 19].

그러나 기업의 핵심 역량 중 하나인 연구개발 부문의 중요성에 비해 체계적인 성과지표에 관한 연구는 미미한 실정이다. 이는 연구개발 부문이 영업, 생산 등 다른 부 문과는 달리 성과가 명확하지 않은 것에 기인한다.

본 논문에서는 연구개발 분야의 체계적인 성과지표 수립방법론을 제안하고 A기업의 실제 연구개발 부문 성 과지표 개발사례에 적용함으로써 제안된 방법론의 효과 성을 검증하였다.

2. 성과지표 수립 방법론

성과지표를 수립하는 과정은 기업경영에 있어 매우 중요한 과정이나 체계적인 절차와 구체적인 방법에 관한 연구는 취약한 실정이다. 민대기[7] 등이 <Figure 1>과 같은 개략적인 프레임워크를 개발하였으나 구체적이지 못해 실제 적용에는 어려움이 따른다. 성과지표 개발을 적용한 기존연구도 각 적용사례를 일반화하기 힘들다. 따라서 좀 더 체계적이고 일반적인 성과지표 개발 방법 론이 요구된다.

<Figure 1> Framework of Establish Performance Indicator[7]

본 논문에서는 기존의 개략적인 프레임워크를 기반으 로 구체적이며 적용 가능한 방법론을 아래와 같이 제시 하였다.

<Table 1> Establish Steps of Performance Indicators

Draw of Critical Success Factors	 Draw of Critical Success Factor (CSF) Analysis of Business Environment : Analysis of External Environment and Internal Capacity SWOT Analysis Strategy Analysis Interview of Executive Manager 			
Draw of Candidate Performance Indicator	Draw of Candidate Performance Indicator - Process Analysis - Analysis of Existing Performance Indicator - Brainstorming - Working-level Interview - Grouping of Performance Indicator			
Performance Indicator Making	Evaluation of Performance Indicator - Relationship analysis of Performance Indicator - Strategy Map Performance Indicator Making - Performance Indicator Analysis : AHP (Analytic Hierarchy Process) - Definition of Performance Indicator			
Performance Indicator Execution	Performance Indicator Execution - Data Gathering - DEA (Data Envelopment Analysis) - Deliverable Output - Assessment operation Planning			

본 논문에서 제시된 성과지표 수립절차는 4단계로 구 성되며 구체적인 수립방안은 아래와 같다.

2.1 핵심성공 요인 도출

기업의 성과지표는 기업전략과의 일치성이 매우 중요 하다. 따라서 기업의 성과지표를 구축하기 위한 첫 번째 단계에서는 대상 기업의 전략과 경영환경을 분석하여 핵심 성공요인(Critical Success Factor : CSF)을 도출한다. 이를 위해서 우선 기업을 둘러싸고 있는 대내외 경영환경 동향 을 분석하고 및 회사의 내부역량을 분석하는 것이 필요하다. 외부환경분석을 토대로 회사의 기회(Opportunity)와 위협 (Threat)요인을 분석하고 내부역량분석에 기반하여 회사의 강점(Strength)과 약점(Weakness)을 도출한 후 SWOT(Strength, Weakness, Opportunity, and Threat)분석을 실시한다. SWOT 분석에서는 외부 환경의 기회요인과 위협요인을 내부의 강점 및 약점과 분석하여 핵심성공요인을 도출하게 된다.

2.2 후보 성과지표 도출

연구개발 부문의 성과지표 수립을 위한 두 번째 단계 는 후보 성과 지표의 도출을 목표로 한다. 성과지표의 후 보군을 도출하기 위해 본 논문에서는 프로세스 분석과, 기존 성과지표 분석 및 실무자 인터뷰를 병행할 것을 제 안한다. 2단계의 가장 기초적인 작업은 기존 성과지표 분석이다. 기존 성과지표 분석을 토대로 프로세스 분석을 수행하여 해당 연구개발 부문의 업무를 파악하고, 실무 자 인터뷰를 통해 후보 성과지표에 대한 기초 자료를 도출 한다. 그 다음단계에서 브레인스토밍을 거쳐 후보 성과 지표를 도출한 후 성과지표 그룹화를 통해 체계화한다.

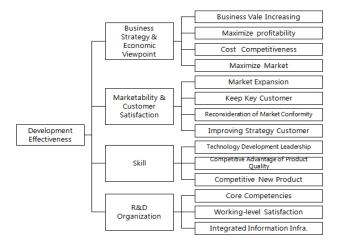
2.3 성과지표 수립

3단계는 성과지표 체계를 구축하는 단계이다. 2단계에 서 도출된 후보 성과지표는 단순한 성과지표의 나열일 뿐 해당 연구개발 부문의 핵심성공요인과의 연관성이 체 계화되어 있지 않다. 따라서 전 단계에서 도출된 후보 성 과지표와 조직의 핵심 성공요인간의 연관성을 분석할 필 요가 있다. 분석된 인과관계는 전략지도(Strategy Map)를 이용하여 요약한다. 전략지도는 전략간의 인과관계에 대 한 체계화된 도식을 통해 개별 전략들의 실행간의 연결 성을 표현하고 관리하기 위한 도구이다[15].

인과관계 분석과 전략지도를 통해 성과지표 안을 수 립한 후 의견 수렴을 거쳐 성과지표를 확정한다. 본 연구 에서는 핵심성공요인의 가중치를 부여하기 위해 계층적 의사결정론(Analytical Hierarchy Planning; AHP)의 활용 을 제안한다. 계층적 의사 결정론을 이용하여 각 핵심성 공요인의 가중치를 정하고 확정된 성과지표의 정의서가 작성되면 성과지표의 구축이 마무리된다.

2.4 성과지표 실행

수립된 성과지표를 효과적으로 실행하고 활용하기 위 해서는 성과지표를 통한 정량적인 평가가 이루어져야 한다. 마지막 단계에서는 3단계에서 수립된 성과지표를 평가 하고 이를 실행하기 위한 운영 안을 작성한다. 도출된 성 과지표를 사용하여 부서별 효율성을 평가하기 위해서는 우선적으로 데이터 수집이 이루어져야 한다. 수집된 데이 터를 이용하여 연구개발 부문의 부서별 효율성을 평가하 기 위해 본 연구에서는 DEA(Data Envelopment Analysis) 의 활용을 제안한다. DEA를 활용하여 부서별 효율성을 평가하기 위해서는 입력지표와 산출지표에 대한 정의가 필요한 데, 전 단계에서 도출된 전략지도를 토대로 입력 지표와 산출지표를 정의한다.


본 절에서는 연구개발부문의 체계적인 성과지표 수립을 위한 4단계 절차를 제시하였다. 다음 절에서는 제시된 4 단계 절차의 실제 적용을 통해 본 연구를 검증하고자 한다.

3. 성과지표를 이용한 R&D 부서 평가

본 절에서는 반도체 제조 기업인 A사의 성과지표 구 축 과정을 소개하고자 한다. 대상 기업인 A사는 전자제 품을 제조하여 세트 업체에 납품하는 회사로서, 제조나 영업부문의 경우 성과지표에 의한 경영이 이루어지고 있 으나 연구개발 부문은 성과를 측정하고 부서별 성과를 평가하는 데 많은 어려움이 있었다. 따라서 연구개발 부문 의 성취도를 평가, 모니터링, 피드백하고 연구 성과를 정 량적으로 관리하는 체계를 구현하기 위해 성과지표 체계 를 본 논문에서 제시된 방법론에 따라 도입하고자 한다.

3.1 1단계 : 핵심 성공요인 도출

기업의 경영 전략과 괴리된 성과지표는 종종 의도하지 않은 방향으로 기업을 이끌게 된다. 따라서 성과지표 수 립 시에 가장 우선적으로 시행되어야 하는 것이 핵심성공 요인을 수립하는 것이다. 핵심 성공요인은 기업 내·외부 경영환경 분석, 전략 분석 및 임원인터뷰 등을 거쳐 도출 된다. 본 연구의 범위는 해당 기업 전체가 아니라 연구개 발부문에 국한되므로 상위 성공요인은 '개발 효율성'이

<Figure 2> Key Success Factors

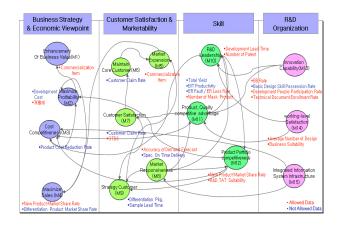
선정되었다. 하위 성공요인은 <Figure 2>와 같이 15개가 선정되었으며, 이는 경영전략 및 경제성, 시장성 및 고객 만족, 기술성, 개발 조직의 4가지 관점으로 분류되었다. 1 단계에서 도출된 핵심성공 요인을 <Figure 2>에 요약하였다.

3.2 2단계 : 후보 성과 지표도출

연구개발 부문의 후보 성과지표 수립을 위해서 먼저 연 구 개발 프로세스를 분석하였다. A사의 연구개발 프로세스 는 <Figure 3>과 같이 제품기획, 설계, 테스트 개발, 패키지 개발, 샘플 개발, 양산이관 및 양산의 총 6단계로 구성된다.

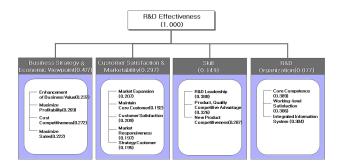
<Figure 3> Process Analysis of R&D

기존 프로세스 분석 결과를 토대로 현업 인터뷰, 브레 인스토밍 등의 과정을 거쳐 후보 성과지표를 도출하였 다. 도출된 후보 성과지표를 <Table 2>에서 제시된 성과 지표 그룹화 기준에 따라 <Table 3>과 같이 분류하였다.


Group Name	Key criteria					
Business Strategy and Economic Viewpoint Indicator	Initiative Technology Development					
	Diversify Products Strategy					
	Development Possibility (Vision)					
	Forecasting of Product Marketplace					
	Appropriacy of Investment Scale					
	Forecast Profit					
	Investment Rate of Return					
	Recovery of Capital Period					
Skill Indicator Customer Satisfaction and Marketability	Accumulation of Technology					
	Urgency of Development					
	Effect of Development Skill					
	Process Effectiveness					
	Product Commercialization by Development Skill					
	Product Quality Improvement					
	Customer Claim					
	Customer Lead Time					
	Customer Needs Performance					
	Scale of Market					
Indicator	Stability of Market					
	Growth of Market					
	Market Share					
	Development Result					
R&D	Secure Development People					
Organization	Development Facilities/Equipment Holdings					
Indicator	Ability of Development People					
	Development Teamwork					

<Table 3> Derivation of Candidate Performance Indicators

Business Strategy and Economic Indicator	Customer Differentiated Product, Commercialization Item, Product Review Time, Total Yield, Product Cost Reduction Rate, Development Cost, New Pro- duct Sales Rate, Personal Expenses by Project, In- vestment Cost by Project, Material Cost by Project, Quality Failure Expenses Rate
Customer Satisfaction and Marketability	Customer Claim Rate, On Time Delivery, Sample Lead Time, Accuracy of Demand Forecast, Product Review Time, Differentiation Pkg., New Product Market Share Rate
Skill Indicator	Development Lead Time, Number of Patent, Engi- neering Run(ER) Loss, Engineering Run(ER) Failure Rate, Product Review Time, Shipment Quality Fraction Defective Rate, Shipment Quality Reliability, Mask Number, Design Change Number, Number of Develop- ment New Product, Basic Design Skill Possession Rate, Process Capacity Index, Ramp Up Yield, Total Yield, Internal Claim Rate, Quality Improvement/ Accident Prevention Rate, Test Analysis Receipt Number, Quality Failure Cost Rate
R&D Organization Indicator	Development People Participation Rate, Basic Design Skill Possession Rate, Technical Document Enroll- ment Rate, Business Adjustment Rate, Average Number of Design


3.3 3단계 : 성과 지표 수립

도출된 후보 성과지표와 핵심성공요인 간의 연관성 을 심층적으로 분석하기 위해 <Figure 4>에서 나타나는 바와 같이 성과지표와 핵심성공요인간의 전략지도를 작성하였다. 이를 통해 후보 성과지표 중 핵심성공요인 과 연관성이 높은 성과지표를 선별할 수 있을 뿐만 아 니라 성과지표간의 연관관계도 구축하게 된다. 도출된 성과지표간의 연관관계는 성과지표의 실행 단계에서 DEA를 활용한 정량적 평가에 활용되는데, 전략지도에 근거해서 핵심성공요인의 입력지표와 출력지표를 선정 하게 된다.

<Figure 4> Strategy Map

본 연구에서는 연구개발 부문 종사자들을 대상으로 AHP분석을 실시하여 <Figure 5>와 같이 핵심성과 지표 별 가중치를 부여하였다.

<Figure 5> Weighted Value by AHP

<table 4=""> Definition of Performance Indicators</table>	<table 4<="" th=""><th>1></th><th>Definition</th><th>of</th><th>Performance</th><th>Indicators</th></table>	1>	Definition	of	Performance	Indicators
---	--	----	------------	----	-------------	------------

Business Strategy and Economic Viewpoint	Commercialization Item(Product Item)			
	Development Cost			
	Total Yield			
	Product Cost Reduction Rate			
	New Product Market Share Rate			
	Differentiation Product Market Share Rate			
Customer Satisfaction and	Customer Claim Rate			
	On Time Delivery			
	Accuracy of Demand Forecast			
	Spec. On Time Delivery			
Marketability	Differentiation Pkg.			
	Sample Lead Time			
	Development Lead Time			
	Number of Patent			
	Engineering Run Failure Rate			
Skill	Engineering Run Loss			
	Number Product of Mask			
	Number of Development New Product			
	Basic Design Skill Possession Rate			
	Development People Participation Rate			
R&D	Average Number of Design			
Organization	Business Adjustment Rate			
	Technical Document Enrollment Rate			

최종적으로 정의된 성과지표는 <Table 4>에 나타나 있다. 정의된 성과지표는 전략지도에 의해 핵심성과지표 와 연계되고 핵심성과지표의 정략적 가중치를 이용하여 각 부서의 정량적 평가에 활용된다.

3.4 4단계 : 성과지표 실행

확정된 성과지표의 활용을 위해서는 성과지표를 이용

한 평가가 이루어져야 한다. 본 연구에서는 부서별 효율 성을 측정하기 위해서 DEA 기법을 활용하였다. 대상기 업인 A사는 제품군 별로 5개의 개발 부서가 운영되고 있다. 구축된 성과지표 체계를 이용하여 부서별 효율성을 측정하기 위해 <Table 5>와 같이 데이터를 수집하였다.

<Table 5> Data Collection of Performance Indicators

	Items	Unit	Α	В	С	D	F
Business Strategy and Economic Viewpoint	Commercialization Item(Product Item)	ea	36	18	24	23	43
	New Product Sales Rate	%	69.2	31.4	62.4	32.7	97.3
Customer	Development Lead Time	%	72.2	71.4	63.6	74.3	-
Satisfaction and	On Time Delivery	%	77.6	83.4	85.4	79.4	83.0
Marketability	Accuracy of Demand Forecast	%	39.6	36.1	36.5	31.1	15.7
	Number of Patent	ea	177	62	62	48	-
	Engineering Run Loss	ea	688	404	139	407	-
Skill	Number Product of Mask	ea	1412	930	140	759	-
	Number of Development New Product	ea	16	7	5	8	24
	Development People Participation Rate	person	392	117	84	129	5
R&D Organization	Development People Participation Rate	person	392	117	84	129	5
	Average Number of Design	ea	16	7	5	8	24
	Business Adjustment Rate	%	68.4	67.2	77.7	50.2	-
	Technical Document Enrollment Rate	%	59.4	59.3	54.7	46.2	-

수집된 데이터는 부서별 효율성을 측정하는 데 활용 된다. DEA 모델링 시 각 개발 부서가 DMU(Decision Making Unit)로 정의되며 성과지표의 입력지표/산출지표 설정은 전 단계에서 작성한 전략지도에 기반한다.

부서별 개발 효율성 측정을 위하여 <Table 5>에서 수 집된 데이터를 대상으로 DEA를 수행하였다. DEA 계산 을 위해서 LINGO 모델을 이용하였다. DEA 실행 결과로 개발 효율성은 A부서는 79.29%, B부서는 68.25%, C부서 는 77.23%, D부서는 80.01%, 그리고 E부서는 46.01%로 계산되었다.

시장성 및 고객만족, 기술성, 고객만족에 관한 지표 효 율성 분석도 이루어졌다. 부서별 효율성 측정 결과 효율 성이 가장 높게 나타난 부서는 D부서이며 A부서와 C부 서가 그 다음으로 높게 나타났다. 기존 연구부서 평가에 서는 매출비중 높은 제품군의 연구개발을 담당하는 A부 서가 항상 높은 평가를 받아왔으나 본 연구 결과 D부서 가 비록 매출비중은 A부서에 비해 높지 않으나 입력대 비 산출물의 효율성 측면에서는 A부서보다 높은 것으로 나타났다. 따라서 본 논문에서 제시된 연구개발 부문의 핵심성과지표 수립 방법론이 반도체 제조 기업인 A사의 성과지표 구축 과정에 효과적으로 적용되었으며 의미 있 는 결과가 도출되었음을 알 수 있다.

4.결론

본 연구에서는 기업의 성과지표를 도출하는 체계적인 방법론을 제시하고 이를 실제 연구개발 분야의 성과지표 개발 사례에 적용하였다.

연구개발 분야는 비정형적이며 창조적인 업무의 속성 상 생산이나 영업 분야에 비해 성과 측정 및 관리가 어 려운 측면이 존재한다. 본 논문에서는 반도체 기업의 사 례 연구를 통해 연구개발 부문의 성과지표 개발 방법론 을 제시하였다. 전략지도와 AHP 기법을 도입하여 실제 기업의 전략 방향과 일관성 있게 성과지표를 활용하도록 하였다. DEA 기법을 활용하여 각 부서의 효율성을 하나 의 지표로 도출할 수 있는 방법론을 개발하고 이를 적용 하였다. 이러한 방법론은 연구개발 부문뿐만 아니라 일 반적인 분야에서도 적용 가능할 것으로 기대된다.

Acknowledgement

This study was partially supported by Seoul National University of Science and Technology.

References

- Kwon, Y.D., Whang, I.K., Lee, J.H., and Suh, W.S., Development of BSC Key Performance Indicator(KPI) in Emergency Medical Center. *The Korean Journal of Health Economics and Policy*, 2010, Vol. 16, No. 3, p 17-39.
- [2] Kim, G.H. and Nam, Y.J., A Study on Development of Performance Indicators for Korean Public Libraries. *Journal of the Korean Library and Information Science Society*, 2008, Vol. 42, No. 4, p 113-139.
- [3] Kim, S.M., A Study on Using the Balanced Scorecard in the Evaluation and Management of Public Organization : Focused on the Case Study of HAMONI. *The Korean Governance Review*, 2005, Vol. 13, No. 2, p 291-319.
- [4] Kim, J.T., Study on Developing BSC-based Public Library Performance Indicator Model. *Journal of the Korea*

Library and Information Science Society, 2009, Vol. 40, No. 1, p 47-71.

- [5] Kim, H.J., A Study on the Development of KPI in Golf Resort Business in Korea Using BSC. *Journal of Tourism* and Leisure Research, 2009, Vol. 21, No. 4, p 147-172.
- [6] Nam, Y.J., Lee, S.Y., and Chang, B.S., The Study of BSC Balanced Scorecard of School Library. *Journal* of the Korean Library and Information Science Society, 2008, Vol. 42, No. 2, p 277-294.
- [7] Min, D.K. and Kim, K.J., The Development of The Business Performance Metric : Framework and Application Scenarios. Proceedings of The Korean Operations Research and Management Science Society/Korean Institute of Industrial Engineers Conference, 2005, p 579-584.
- [8] Park, M.S. and Ahn, Y.H., Framework for Supply Chain Management Performance Measure. *Journal of the Korean Society of Supply Chain Management*, 2003, Vol. 3, No. 1, p 41-52.
- [9] Sohn, M.H., Kim, J.G., You, T.W., Rhim, H.S., and Lee, H.S., A Comparative Analysis of Balanced Scorecard Performance Measures Based on Business Strategy. *Asia Pacific Journal of Information Systems*, 2003, Vol. 13, No. 1, p 1-22.
- [10] Shih, Y.H., A Study on SCM Service Quality Measurement using Logistics Performance Indicators. Proceedings of Korean Society for Quality Management Conference, 2005, p 493-496.
- [11] Ahn, K.S. and Ryu, H.L., A study on the limitation of BSC for the performance evaluation of the government department : focusing on the Korea coast guard. *Journal of Korean Association for Policy Science*, 2011, Vol. 15, No. 4, p 261-284.
- [12] Yoon, W.S., Lee, H.K., Maeng, S.J., and Song, J.H., Development of Key Performance Indicators(KPI) for the Nursing Department in the Military Hospital Journal of military nursing, research, *Analysis*, 2012, Vol. 30, No. 1.
- [13] Lee, S.H., A Case Study on Application of BSC to Public Sectors. Korean Public Administration Review, 2006, Vol. 40, No. 1.
- [14] Lee, D.H., Kim, S.H., Kwon, G.D., Kim, M.K., and Kim, S.K., The Management Evaluation Key Performance Indicators of Korean Construction Firms. *Journal of the Korean Institute of Building Construction*, 2011, Vol. 11, No. 1, p 35-44.
- [15] Lim, H. and Rhim, H.S., A study on the improvement

of performance indicators in strategy map using by social network theory-focused on the K-institute case. *Productivity Review*, 2009, Vol. 23, No. 4.

- [16] Lim, Y.H., Sohn, M.H., and Lee, H.S., Analyzing Weighting of Corporate IT Performance Measures by IT Balanced Scorecard. *Koran Management Review*, 2005, Vol. 34, No. 6, p 1807-1828.
- [17] Lee, J.I., A Practical Guide for KPI development. LG Business Insight, 2000, Vol. 7, No. 12, p 36-42.
- [18] Lee, H.J., Kim, W.J., and Kim, C.S., A Study on Developing the Performance Evaluation Indicators of Defense R&D Test Development Projects. *IE Interfaces*,

2010, Vol. 23, No. 1, p 78-88.

- [19] Chung, T.W., Development of Management Performance Index Building BSC System for Hotels. *The Journal* of the Korea Contents Association, 2008, Vol. 8, No. 9, p 234-241.
- [20] Kaplan, R.S. and Norton, D.P., The Balanced Scorecard -Measures That Drive Performance. *Harvard Business Review*, January-February, 1992.
- [21] Van Der Zee, J. and Jong, B.D., Alignment is not enough : Integrating Business and Information Technology Management with the Balanced Scorecard, *Journal of Management Information*, 1999, Vol. 16, No. 2.