DOI QR코드

DOI QR Code

Axial Thrust Control of High-speed Centrifugal Pump with Cavity Vanes

캐비티 베인이 있는 고속 원심펌프의 축추력 제어

  • 김대진 (한국항공우주연구원 터보펌프팀) ;
  • 최창호 (한국항공우주연구원 터보펌프팀) ;
  • 노준구 (한국항공우주연구원 터보펌프팀) ;
  • 김진한 (한국항공우주연구원 터보펌프팀)
  • Received : 2012.06.14
  • Accepted : 2012.09.14
  • Published : 2012.12.01

Abstract

A high-speed centrifugal pump requires more attention to the control of its axial thrust due to the high discharge pressure than a conventional industrial pump. Vanes employed toward the rear cavity of the impeller can be an effective device to control the axial thrust of the pump. The vanes disturb circumferential flow of the cavity and it can modify the axial force acting on the impeller. In this paper, three types of vanes are installed in the high-speed centrifugal pump for liquid rocket engines and the thrust of the pump is measured with an additional thrust measurement unit. According to the results, shapes of cavity vanes have effects on the axial thrust of the pump. As the height of vanes increases, the outlet pressure of the rear floating ring seal decreases which results in a decrease of the thrust. On the other hand, head of the pump is almost same regardless of cavity vanes. Also, the pressure drop of the bypass pipeline increases when vanes are removed.

Keywords

References

  1. Demyanenko, Yu., V., Dmitrenko, A. I., Pershin, V. K. and Grebennikov, D. Yu., 2004, "Investigation of the Performance of a Thrust Balance Device for a Centrifugal Pump Rotor," 40th AIAA/ASME/SAE/ASEE Joint Propulsion Cenference and Exhibit, AIAA-2004-3689.
  2. Kurokawa, J., Kamijo, K. and Shimura, T., 1994, "Axial Thrust Behavior in LOX-Pump of Rocket Engine," Journal of Propulsion and Power, Vol. 10, No. 2, pp. 244-250. https://doi.org/10.2514/3.23735
  3. Ha, T.-W., Lee, Y.-B., and Kim, C.-H., 2002, "Leakage and Rotordynamic Analysis of a High Pressure Floating Ring Seal in the Turbo Pump Unit of a Liquid Rocket Engine," Tribology International, Vol. 35, No. 3, 2002, pp. 153-161. https://doi.org/10.1016/S0301-679X(01)00110-4
  4. Choi, C. H., and Kim, J., 2008, Centrifugal turbomachine with axial thrust control member, US patent No. US7354240B2.
  5. 노준구, 최창호, 김진한, 2006, "터보펌프 축추력 조절용 캐비티 베인에 대한 수치해석적 연구," 유체기계저널, 제9 권, 제2호, pp. 39-43.
  6. 최창호, 노준구, 김대진, 김진한, 양수석, 2012, "액체로켓 엔진 터보펌프용 펌프의 축추력 조절에 관한 연구," 유체기계저널, 제15권, 제1호, pp. 36-40.
  7. 김대진, 홍순삼, 김진한, 2005, "로켓엔진용 연료펌프의 축추력 측정," 제25회 한국추진공학회 추계학술발표대회, pp. 358-362.
  8. 김대진, 홍순삼, 최창호, 김진한, 2011, "75톤급 액체로켓엔진용 산화제펌프의 수류시험," 항공우주기술, 제10권, 제1호, pp. 122-128.
  9. 홍순삼, 임현, 김대진, 차봉준, 강정식, 임병준, 김진한, 2004, "터보펌프 성능시험 및 평가", 유체기계저널, 제7권, 제3호, pp. 84-87. https://doi.org/10.5293/KFMA.2004.7.3.084
  10. Stepanoff, A. J., 1957, Centrifugal and Axial Flow Pumps, John Wiley & Sons, INC., pp. 204-209.
  11. 김대진, 홍순삼, 최창호, 김진한, 2010, "75톤급 로켓엔진용 연료펌프의 축추력 측정," 항공우주기술, 제9권, 제2호, pp. 8-13.

Cited by

  1. CFD Analysis on the Balancing Hole Design for Magnetic Drive Centrifugal Pumps vol.13, pp.22, 2012, https://doi.org/10.3390/en13225865