DOI QR코드

DOI QR Code

Gene Expression Profiling of Oilseed Rape Embryos Using Microarray Analysis

Microarray 분석을 이용한 유채 종자성숙단계별 유전자 발현 양상

  • Roh, Kyung Hee (Department of Agricultural Biotechnology, National Academy of Agricultural Science, RDA) ;
  • Park, Jong-Sug (Department of Agricultural Biotechnology, National Academy of Agricultural Science, RDA) ;
  • Kim, Jong-Bum (Department of Agricultural Biotechnology, National Academy of Agricultural Science, RDA) ;
  • Kim, Hyun Uk (Department of Agricultural Biotechnology, National Academy of Agricultural Science, RDA) ;
  • Lee, Kyeong-Ryeol (Department of Agricultural Biotechnology, National Academy of Agricultural Science, RDA) ;
  • Kim, Sun Hee (Department of Agricultural Biotechnology, National Academy of Agricultural Science, RDA)
  • Received : 2012.09.03
  • Accepted : 2012.10.08
  • Published : 2012.12.31

Abstract

We observed that oil began to accumulate at 25 seed days after flowering (DAF) and reached the maximum potential at 35 seed DAF of oilseed rape, and the greatest weight of 100 seeds was obtained at 35 seed DAF. To survey a broad analysis of gene expression in developing embryos of Brassica napus, the Bn 300k microarray have been constructed. The Bn 300k Microarrary was designed from 80,696 unigenes clustered from 543,448 ESTs and 780 cDNA at NCBI. These arrays have been hybridized in a series of experiments with probes derived from seeds and leaf of B. napus. Approximately 8.5% of the 7,000 genes were expressed as ratios 2-fold higher in seed (25 DAF) than leaves and 0.4% at ratios 10. Also we observed that storage and cell differentiation-related genes were highly expressed at 10 DAF, whereas energy-related genes including fatty acid metabolism were increased up depending on seed maturation using Microarray, which was confirmed by reverse transcriptase polymerase chain reaction. These results suggest that B. napus arrays provide a very useful data set of seed-specific expression that can be further analyzed by examination of the promoter regions of these genes and help our understanding of the complex regulatory network in developing seeds.

유채 종자 성숙단계별 변화하는 종자의 특성을 살펴본 결과, 개화 후 25일된 미성숙 종자에서 지방산 생성이 관찰되기 시작하였으며, 개화 후 35일된 미성숙 종자에서 지방산 생성이 거의 최고치에 달하는 것을 관찰하였으며, 이 때 백립중이 406 mg으로 가장 무거웠다. 유채 300k Microarray를 이용하여 유채 종자 성숙단계별 발현되는 유전자의 발현양상을 살펴보았다. 유채 300k Microarray는 NCBI에 등록되어 있는 543,448개의 ESTs와 780개의 cDNA정보를 군집 분석하여 80,696개의 유전자정보를 얻어 제작되었다. 개화 후 10, 25, 그리고 35일된 종자에서 total RNA를 분리하여 유채 300k Microarray 실험을 수행한 결과, 약 7,000개의 유전자에 해당하는 8.5%가 잎에 비해 종자(25DAF)에서 발현 양이 2배 이상 증가됨을 알 수 있었고, 10배 이상 증가하는 유전자 비율도 0.4%에 해당하였다. 종자 특이 발현 유전자의 발현양상을 보면, 초기에는 저장 및 세포분화 관련 유전자들의 발현 양이 높게 나타난 반면, 후기에는 지방산 대사 관련 유전자를 포함한 에너지 축적 관련 유전자들의 발현 양이 높게 나타나는 것을 관찰 할 수 있었으며, reverse transcriptase-polymerase chain reaction을 통해서 이를 확인하였다. 본 실험 결과는 종자 특이 발현 프로모터를 발굴하거나 특정 대사 기작 연구에 관여하는 유전자 발현 양상을 광범위하게 살펴봄으로써 좀 더 심도 있는 연구를 할 수 있는 기초자료를 제공하는데 많은 도움이 될 거라 사료된다.

Keywords

References

  1. Arabidopsis Genome Initiative (2010) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796-815.
  2. Birtic S and Kranner I (2006) Isolation of high-quality RNA from polyphenol-, polysaccharide- and lipid-rich seeds. Phytochem Analysis 17, 144-8. https://doi.org/10.1002/pca.903
  3. Bradford K and Nonogaki H (2007) Seed development, dormancy and germination. In Annual Plant Reviews. Blackwell publishing Ltd, Oxford, UK.
  4. Cadman CSC, Toorop PE, Hilhorst HWM, and Finch-Savage WE (2006) Gene expression profiles of Arabidopsis Cvi seeds during dormancy cycling indicates a common underlying dormancy control mechanism. Plant J 46, 805-22. https://doi.org/10.1111/j.1365-313X.2006.02738.x
  5. DeRisi JL, Iyer VR, and Brown PO (1997) Exploring the metabolic and genetic control of gene expression on a genome scale. Science 278, 680-6. https://doi.org/10.1126/science.278.5338.680
  6. Dyer WE, Henstrand JM, Handa AK, and Herrmann KM (1989) Wounding induces the first enzyme of the shikimate pathway in Solanaceae. Proc Natl Acad Sci USA 86, 7370-3. https://doi.org/10.1073/pnas.86.19.7370
  7. Erhan SZ and Adhvaryu A (2005) Non-food lipids. In Plant Lipids, pp. 103- 22. Blackwell Publishing Ltd, Oxford, UK.
  8. Fowler S and Thomashow MF (2002) Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell 14, 1675-90. https://doi.org/10.1105/tpc.003483
  9. Girke T, Todd J, Ruuska S, White J, Benning C, and Ohlrogge J (2000) Microarray analysis of developing Arabidopsis seeds. Plant Physiol 124, 1570-81. https://doi.org/10.1104/pp.124.4.1570
  10. Glanemann C, Loos A, Gorret N, Willis LB, O'Brien XM, Lessard PA et al. (2003) Disparity between changes in mRNA abundance and enzyme activity in Corynebacterium glutamicum: implications for DNA microarray analysis. Appl Microbiol Biotechnol 61, 61-8. https://doi.org/10.1007/s00253-002-1191-5
  11. Gomez LD, Baud S, Gilday A, Li Y, and Graham IA (2006) Delayed embryo development in the Arabidopsis trehalose-6-phosphate synthase 1 mutant is associated with altered cell wall structure, decreased cell division and starch accumulation. Plant J 46, 69-84. https://doi.org/10.1111/j.1365-313X.2006.02662.x
  12. Harada JJ (1997) Seed maturation and control of germination. In Advances in Cellular and Molecular Biology of Plants, pp. 545-92. Kluwer Academic Publishers, Dordrecht, Netherlands.
  13. Hara-Nishimura I, Takeuchi Y, Inoue K, and Nishimura M (1993) Vesicle transport and processing of the precursor to 2S albumin in pumpkin. Plant J 4, 793-800. https://doi.org/10.1046/j.1365-313X.1993.04050793.x
  14. Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, and Speed TP (2003) Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res 31, e15. https://doi.org/10.1093/nar/gng015
  15. Le BH, Cheng C, Bui AQ, Wagmaister JA, Kwong L, Drews GN et al. (2010) Global analysis of gene activity during Ariabidopsis seed development and identification of seed-specific transcription factors. Proc Natl Acad Sci USA 107, 8063-70. https://doi.org/10.1073/pnas.1003530107
  16. Lee SC, Lim MH, Kim JA, Lee SI, Kim JS, Jin M et al. (2008) Transcriptome analysis in Brassica rapa under the abiotic stresses using Brassica 24K Oligo Microarray. Mol Cells 26, 595-605.
  17. Lee SJ, Kim HS, and Lee EY (2006) Enhanced heterologous expression of Aspergillus niger epoxide hydrolase and its application to enantioselective hydrolysis of racemic epoxides. J Korean Ind Eng Chem 17, 557-60.
  18. Ma L, Chen C, Liu X, Jiao Y, Su N, Li Let al. (2005) A microarray analysis of the rice transcriptome and its comparision to Arabidopsis. Genome Res 15, 1274-83. https://doi.org/10.1101/gr.3657405
  19. Muphy DJ (2005) Fatty acid biosynthesis. In Plant Lipids, pp. 27-56. Blackwell Publishing Ltd, Oxford, UK.
  20. Ponz F, Paz-Ares J, Hernandez-Lucas C, Carbonero P, and Garcia-Olmedo F (1983) Synthesis and processing of thionin precursors in developing endosperm from barley (Hordeum vulgare L.). EMBO J 2, 1035-40.
  21. Roh KH and Park JS (2007) Biodiesel:oil-crops and biotechnology. J Korean Soc Appl Biol Chem 50, 137-46.
  22. Roh KH, Kwak BK, Kim HU, Lee KR, Kim SH, Suh MC et al. (2011) Production of transgenic plants in Brassica napus Winter cultivar 'Youngsan'. J Appl Biol Chem 54, 26-32. https://doi.org/10.3839/jabc.2011.005
  23. Tai HH, Pelletier C, and Beardmore T (2004) Total RNA isolation from Picea mariana dry seed. Plant Mol Biol Rep 22, 93a-93e. https://doi.org/10.1007/BF02773357
  24. Tusher VG, Tibshirani R, and Chu G (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 98, 5116-21. https://doi.org/10.1073/pnas.091062498
  25. Venglat P, Xiang D, Qiu S, Stone SL, Tibiche C, Cram D et al. (2011) Gene expression analysis of flax seed development. BMC Plant Biol 11, 1-14. https://doi.org/10.1186/1471-2229-11-1
  26. Zeman I and Kratochvíl V (1967) Changes in the composition of winter rape oil during seed maturation. Biologia Plantarum 9, 1-14. https://doi.org/10.1007/BF02930729

Cited by

  1. Molecular and systems approaches towards drought-tolerant canola crops vol.210, pp.4, 2016, https://doi.org/10.1111/nph.13866
  2. Overexpression of Acyl-ACP Thioesterases, CpFatB4 and CpFatB5, Induce Distinct Gene Expression Reprogramming in Developing Seeds of Brassica napus vol.20, pp.13, 2012, https://doi.org/10.3390/ijms20133334