DOI QR코드

DOI QR Code

마이크로파-폴리올법을 이용한 고분자 전해질 연료전지용 Pt/MWCNTs 촉매의 제조 및 이의 특성분석

Synthesis and Study of Pt/MWCNTs Catalysts by Using Microwave Assisted Polyol Method for PEM Fuel Cells

  • 이태규 (울산대학교 화학공학부) ;
  • 허승현 (울산대학교 화학공학부)
  • Lee, Tae Kyu (School of Chemical Engineering and Bioengineering, University of Ulsan) ;
  • Hur, Seung Hyun (School of Chemical Engineering and Bioengineering, University of Ulsan)
  • 투고 : 2012.11.20
  • 심사 : 2012.11.30
  • 발행 : 2012.11.30

초록

본 연구에서는 50 wt%에 달하는 매우 높은 Pt 담지량에서도 장기내구성이 우수한 연료전지용 Pt/MWCNT 촉매를 마이크로파를 이용한 폴리올법을 이용하여 제조하였다. X선 회절분석법과 투과전자현미경 분석결과 마이크로파 조사시간이 늘어남에 따라 Pt의 크기가 증가하였다. 마이크로파 조사시간이 10분, 20분, 30분일 경우 Pt 크기는 각각 4.1, 4.9, 8.5 nm로 나타났다. 마이크로파를 사용하지 않은 기존 폴리올 방법에 의해 제조된 촉매와 비교하였을 경우 Pt 분산도와 장기내구성이 증가한 것으로 나타났다.

In this study, highly loaded(50 wt%) and very stable Pt/MWCNT catalysts for Polymer Electrolyte Membrane Fuel Cells(PEMFCs) are synthesized in short time scale by microwave assisted polyol method with different microwave irradiation time. The XRD and TEM results show that the Pt size becomes bigger as the microwave irradiation time increases. The mean Pt sizes of fabricated catalysts are 4.1, 4.9 and 8.5 nm when the microwave are irradiated for 10, 20 and 30 min, respectively. When compared with Pt catalyst made by conventional polyol method, it shows better long term durability due to the better Pt dispersion on the MWCNT surface.

키워드

참고문헌

  1. F. Lufrano, E. Passalacqua, G. Squadrito, A. Patti, and L. Giorgi, "Improvement in the diffusion characteristics of low Pt-loaded electrodes for PEFCs" J. Applied Electrochemistry, 29, 445 (1999). https://doi.org/10.1023/A:1026419102310
  2. S. Koh, C. Yu, P. Mani, R. Srivastava, and P. Strasser, "Activity of ordered and disordered Pt-Co alloy phases for the electroreduction of oxygen in catalysts with multiple coexisting phases" J. Power Sources, 172, 50 (2007). https://doi.org/10.1016/j.jpowsour.2007.01.002
  3. S. Zhang, X. Yuan, H. Wang, W. Merida, H. Zhu, J. Shen, S. Wu, and J. Zhang, "A review of accelerated stress tests of MEA durability in PEM fuel cells" Int. J. Hydrogen Energy, 34, 388 (2009). https://doi.org/10.1016/j.ijhydene.2008.10.012
  4. Y. Shao, G. Yin, and Y. Gao, "Understanding and approaches for the durability issues of Pt-based catalysts for PEM fuel cell" J. Power Sources, 171, 558 (2007). https://doi.org/10.1016/j.jpowsour.2007.07.004
  5. X. Yu and S. Ye, "Recent advances in activity and durability enhancement of Pt/C catalytic cathode in PEMFC" J. Power Sources, 172, 145 (2007). https://doi.org/10.1016/j.jpowsour.2007.07.048
  6. L. Li and Y. Xing, "Electrochemical durability of carbon nanotubes at $80^{\circ}C$" J. Power Sources, 178, 75 (2008). https://doi.org/10.1016/j.jpowsour.2007.12.002
  7. T. Lee, J. Jung, J. Kim, and S. Hur, "Improved durability of Pt/CNT catalysts by the low temperature selfcatalyzed reduction for the PEM fuel cells" Int. J. Hydrogn Energy, 37, 17992-18000 (2012). https://doi.org/10.1016/j.ijhydene.2012.09.088
  8. W. Chen, J. Zhao, J. Y. Lee, and Z. Liu, "Microwave heated polyol synthesis of carbon nanotubes supported Pt nanoparticles for methanol electrooxidation" Materials Chemistry and Physics, 91, 124 (2005). https://doi.org/10.1016/j.matchemphys.2004.11.003
  9. L. K. Kurihara, G. M. Chow, and P. E. Schoen, "Nanocrystalline metallic powders and films produced by the polyol method" Nanostructured Materials, 5, 607 (1995). https://doi.org/10.1016/0965-9773(95)00275-J
  10. S. Chen and W. Liu, "Preparation and characerization of surface-coated ZnS nanoparticles" Langmuir, 15, 8100 (1999). https://doi.org/10.1021/la9906875
  11. X. Yan, H. Liu, and K. Y. Liew, "Size control of polymer-stabilized ruthenium nanoparticles by polyol reduction" J. Materials Chemistry, 11, 3387 (2001). https://doi.org/10.1039/b103046a
  12. W. X. Chen, J. Y. Lee, and Z. Liu, "Preparation of Pt and PtRu nanoparticles supported on carbon nanotubes by microwave-assisted heating polyol process" Materials Letters, 58, 3166 (2004). https://doi.org/10.1016/j.matlet.2004.06.008
  13. J. Zhao, W. Chen, Y. Zheng, X. Li, and Z. Xu, "Microwave polyol synthesis of Pt/C catalysts with sizecontrolled Pt particles for methanol electrocatalytic oxidation" J. Mater. Sci., 41, 5514 (2006). https://doi.org/10.1007/s10853-006-0276-4
  14. S. Yoshida and M. Sano, "Microwave-assisted chemical modification of carbon nanohorns: Oxidation and Pt deposition" Chemical Physics Letters, 433, 97 (2006). https://doi.org/10.1016/j.cplett.2006.09.074
  15. Y. Y. Chu, Z. B. Wang, D. M. Gu, and G. P. Yin, "Performance of Pt/C catalysts prepared by microwaveassisted polyol process for methanol electrooxidation" J. Power Sources, 195, 1799 (2010). https://doi.org/10.1016/j.jpowsour.2009.10.039
  16. E. Lebegue, S. Baranton, and C. Coutanceau, "Polyol synthesis of nanosized Pt/C electrocatalysts assisted by pulse microwave activation" J. Power Sources, 196, 920 (2011). https://doi.org/10.1016/j.jpowsour.2010.08.107
  17. S. H. Kim, T. K. Lee, J. H. Jung, J. N. Park, J. B. Kim, and S. H. Hur, "Catalytic performance of acid-treated multi-walled carbon nanotube-supported platinum catalyst for PEM fuel cells" Materials Research Bulletin, 47, 2760 (2012). https://doi.org/10.1016/j.materresbull.2012.04.057
  18. K. W. Nam, J. Song, K. H. Oh, M. J. Choo, H. Park, J. K. Park, and J. W. Choi, "Monodispersed PtCo nanoparticles on hexadecyltrimethylammonium bromide treated graphene as an effective oxygen reduction reaction catalyst for proton exchange membrane fuel cells" Carbon, 50, 3739 (2012). https://doi.org/10.1016/j.carbon.2012.03.048
  19. E. S. Sayin, A. Bayrakceken, and I. Eroglu, "Durability of PEM fuel cell electrocatalysts prepared by microwave irradiation technique" Int. J. Hydrogen Energy, 37, 16663 (2012). https://doi.org/10.1016/j.ijhydene.2012.02.170
  20. Z. Liu, L. M. Gan, L. Hong, W. Chen, and J. Y. Lee, "Carbon-supported Pt nanoparticles as catalysts for proton exchange membrane fuel cells" J. Power Sources, 139, 73 (2005). https://doi.org/10.1016/j.jpowsour.2004.07.012
  21. W. X. Chen, J. Y. Lee, and Z. Liu, "Microwave-assisted synthesis of carbon supported Pt nanoparticles for fuel cell applications" Chem. Commun., 2588 (2002).
  22. A. Pozio, M. D. Francesco, A. Cemmi, F. Cardellini, and L. Giorgi, "Comparison of high surface Pt/C catalysts by cyclic voltammetry" J. Power Sources, 105, 13 (2002). https://doi.org/10.1016/S0378-7753(01)00921-1
  23. Y. Takasu, H. Itaya, T. Iwazaki, R. Miyoshi, T. Ohnuma, W. Sugimoto, and Y. Murakami, "Size effects of ultrafine Pt-Ru particles on the electrocatalytic oxidation of methanol" Chem. Commun., 341 (2001).
  24. L. Gan, H. D. Du, B. H. Li, and F. Y. Kang, "The effect of particle size on the interaction of Pt catalyst particles with a carbon black support" New Carbon Materials, 25, 53 (2010).
  25. S. J. Yoo, T. Y. Jeon, K. S. Lee, K. W. Park, and Y. E. Sung, "Effects of particle size on surface electronic and electrocatalytic properties of $Pt/TiO_{2}$ nanocatalysts" Chem. Commun., 46, 794 (2010). https://doi.org/10.1039/b916335b
  26. J. Zheng, R. Fu, T. Tian, X. Wang, and J. Ma, "Effect of the microwave thermal treatment condition on Pt-Fe/C alloy catalyst performance" Int. J. Hydrogen Energy, 37, 12994 (2012). https://doi.org/10.1016/j.ijhydene.2012.05.066
  27. Z. Xu, H. Zhang, H. Zhong, Q. Lu, Y. Wang, and D. Su, "Effect of particle size on the activity and durability of the Pt/C electrocatalyst for proton exchange membrane fuel cells" Applied Catalysis B: Environmental, 111, 264 (2012). https://doi.org/10.1016/j.apcatb.2011.10.007
  28. X. Wang, W. Li, Z. Chen, M. Waje, and Y. Yan, "Durability investigation of carbon nanotube as catalyst support for proton exchange membrane fuel cell" J. Power Sources, 158, 154 (2006). https://doi.org/10.1016/j.jpowsour.2005.09.039