DOI QR코드

DOI QR Code

양이온 교환막을 이용한 이산화탄소의 전기화학적 환원

Electrochemical Reduction of Carbon Dioxide Using a Proton Exchange Membrane

  • 김학윤 (한국과학기술연구원 연료전지연구센터) ;
  • 안상현 (한국과학기술연구원 연료전지연구센터) ;
  • 황승준 (한국과학기술연구원 연료전지연구센터) ;
  • 유성종 (한국과학기술연구원 연료전지연구센터) ;
  • 한종희 (한국과학기술연구원 연료전지연구센터) ;
  • 김지현 (고려대학교 그린스쿨 대학원) ;
  • 김수길 (중앙대학교 융합공학부) ;
  • 장종현 (한국과학기술연구원 연료전지연구센터)
  • Kim, Hak-Yoon (Fuel Cell Research Center, Korea Institute of Science and Technology) ;
  • Ahn, Sang Hyun (Fuel Cell Research Center, Korea Institute of Science and Technology) ;
  • Hwang, Seung Jun (Fuel Cell Research Center, Korea Institute of Science and Technology) ;
  • Yoo, Sung Jong (Fuel Cell Research Center, Korea Institute of Science and Technology) ;
  • Han, Jonghee (Fuel Cell Research Center, Korea Institute of Science and Technology) ;
  • Kim, Jihyun (Green School, Korea University) ;
  • Kim, Soo-Kil (Integrative Engineering, Chung-Ang University) ;
  • Jang, Jong Hyun (Fuel Cell Research Center, Korea Institute of Science and Technology)
  • 투고 : 2012.10.23
  • 심사 : 2012.11.12
  • 발행 : 2012.11.30

초록

전기화학적 환원을 통한 이산화탄소의 활용을 위한 노력은 오래 전부터 계속되어 왔다. 최근에는 액체연료 중 가격이 비싸고 그 활용도가 높은 포름산의 생성을 위한 연구가 많이 진행되고 있지만 실제 포름산을 생성하고 분석하는 과정에서 효율의 개선과 분석에 어려움이 따른다. 따라서 이산화탄소 환원을 이용한 포름산 생성에 필요한 시스템의 제조, 반응 조건의 개발 및 분석 방법의 정량화가 필요하다. 본 연구에서는 이산화탄소의 전기화학적 환원을 통한 포름산의 생성을 진행하고 생성된 포름산의 양을 분석하였다. 실험에 이용된 셀은 양이온 교환막을 사용하는 대용량의 회분형 셀을 이용하였으며 전위차계를 통하여 삼전극에서 전기화학 실험을 진행하였다. 전기화학 실험은 다양한 촉매 금속을 이용하여 선형 전위 주사법과 chronoamperometry를 통해 진행했으며 이 때 기준전극은 염화은 전극을 이용하였고 상대전극은 백금 전극을 사용하였다. 실험을 통해 생성된 포름산의 농도를 high performance liquid chromatography(HPLC)를 통하여 분석하여 시스템의 적정성과 분석 방법의 유효성을 검증하였다.

Electrochemical reduction of carbon dioxide has been widely studied by many scientists and researchers. Recently, the production of formic acid, which is expensive but highly useful liquid material, is receiving a great attention. However, difficulties in the electrochemical reduction process and analyzing methods impede the researches. Therefore, it is important to design an adequate system, develop the reduction process and establish the analyzing methods for carbon dioxide reduction to formic acid. In this study, the production of formic acid through electrochemical reduction of carbon dioxide was performed and concentration of the product has been analyzed. Large scale batch cell with proton exchange membrane was used in the experiment. The electrochemical experiment has been performed using a series of metal catalysts. Linear sweep voltammetry (LSV) and chronoamperometry were performed for carbon dioxide reduction and electrochemical analysis using silver chloride and platinum electrode as a reference electrode and counter electrode, respectively. The concentration of formic acid generated from the reduction was monitored using high performance liquid chromatography (HPLC). The results validate the appropriateness and effectiveness of the designed system and analyzing tool.

키워드

참고문헌

  1. B. Innocent, D. Liaigre, D. Pasquier, F. Ropital, J.-M. Leger, and K. B. Kokoh, 'Electro-reduction of carbon dioxide to formate on lead electrode in aqueous medium' J. Appl. Electrochem., 39, 227 (2009). https://doi.org/10.1007/s10800-008-9658-4
  2. B. Innocent, D. Pasquier, F. Ropital, F. Hahn, J.-M. Leger, and K. B. Kokoh, 'FTIR spectroscopy study of the reduction of carbon dioxide on lead electrode in aqueous medium' Appl. Catal. B-Environ., 94, 219 (2010). https://doi.org/10.1016/j.apcatb.2009.10.027
  3. D. T. Whipple, E. C. Finke, and P. J. A. Kenis, 'Microfluidic reactor for the electrochemical reduction of carbon dioxide: The effect of pH' Electrochem. Solid. St., 13, B109 (2010). https://doi.org/10.1149/1.3456590
  4. D. T. Whipple and P. J. A. Kenis, 'Prospects of $CO_{2}$ utilization via direct heterogeneous electrochemical reduction' J. Phys. Chem. Lett., 1, 3451 (2010). https://doi.org/10.1021/jz1012627
  5. C. W. Li and M. W. Kanan, '$CO_{2}$ reduction at low overpotential on Cu electrodes resulting from the reduction of thick $Cu_{2}O$ films' J. Am. Chem. Soc., 134, 7231 (2012). https://doi.org/10.1021/ja3027086
  6. H. Li and C. Oloman, 'Development of a continuous reactor for the electro-reduction of carbon dioxide to formate-Part 1: Process variables' J. Appl. Electrochem., 36, 1105 (2006). https://doi.org/10.1007/s10800-006-9194-z
  7. F. Koleli, T. Atilan, N. Palamut, A. M. Gizir, R. Aydin, and C. H. Hamann, 'Electrochemical reduction of $CO_{2}$ at Pb- and Sn-electrodes in a fixed-bed reactor in aqueous $K_{2}CO_{3}$ and $KHCO_{3}$ media' J. Appl. Electrochem., 33, 447 (2003). https://doi.org/10.1023/A:1024471513136
  8. B. Kumar, M. Llorente, J. Froehlich, T. Dang, A. Sathrum, and C. P. Kubiak, 'Photochemical and photoelectrochemical reduction of $CO_{2}$' Annu. Rev. Phys. Chem., 63, 541 (2012). https://doi.org/10.1146/annurev-physchem-032511-143759
  9. W. Shin, S. H. Lee, J. W. Shin, S. P. Lee, and Y. Kim, 'Highly selective electrocatalytic conversion of $CO_{2}$ to CO at -0.57 V (NHE) by carbon monoxide dehydrogenase from moorella thermoacetica' J. Am. Chem. Soc., 125, 14688 (2003). https://doi.org/10.1021/ja037370i
  10. S. Jain, J. Vardia, A. Sharma, and S. C. Ameta, 'Photocatalytic reduction of carbonates and formation of some energy rich systems in the presence of Toluidine Blue' Int. J. Energy Res., 25, 107 (2001). https://doi.org/10.1002/er.664
  11. M. Gattrell, N. Gupta, and A. Co, 'A review of the aqueous electrochemical reduction of $CO_{2}$ to hydrocarbons at copper' J. Electroanal. Chem., 594, 1 (2006). https://doi.org/10.1016/j.jelechem.2006.05.013
  12. E. J. Dufek, T. E. Lister, and M. E. McIlwain, 'Benchscale electrochemical system for generation of CO and syn-gas' J. Appl. Electrochem., 41, 623 (2011). https://doi.org/10.1007/s10800-011-0271-6
  13. K. Subramanian, K. Asokan, D. Jeevarathinam, and M. Chandrasekaran, 'Electrochemical membrane reactor for the reduction of carbon dioxide to formate' J. Appl. Electrochem., 37, 255 (2007). https://doi.org/10.1007/s10800-006-9252-6
  14. T. Saeki, K. Hashimoto, N. Kimura, K. Omata, and A. Fujishima, 'Electrochemical reduction of $CO_{2}$ with high current density in a $CO_{2}$+ methanol medium at various metal electrodes' J. Electroanal. Chem., 404, 299 (1996). https://doi.org/10.1016/0022-0728(95)04374-8
  15. M. Todoroki, K. Hara, A. Kudo, and T. Sakata, 'Electrochemical reduction of high pressure $CO_{2}$ at Pb, Hg and In electrodes in an aqueous $KHCO_{3}$ solution' J. Electroanal. Chem., 394, 199 (1995). https://doi.org/10.1016/0022-0728(95)04010-L
  16. F. Koleli and D. Balun, 'Reduction of $CO_{2}$ under high pressure and high temperature on Pb-granule electrodes in a fixed-bed reactor in aqueous medium' Appl. Catal. A-Gen., 274, 237 (2004). https://doi.org/10.1016/j.apcata.2004.07.006
  17. Y. Chen and M. W. Kanan, 'Tin oxide dependence of the $CO_{2}$ Reduction efficiency on tin electrodes and enhanced activity for tin/tin oxide thin-film catalysts' J. Am. Chem. Soc., 134, 1986 (2012). https://doi.org/10.1021/ja2108799
  18. K. Ogura, J. R. Ferrell III, A. V. Cugini, E. S. Smotkin, and M. D. Salazar-Villalpando, '$CO_{2}$ attraction by specifically adsorbed anions and subsequent accelerated electrochemical reduction' Electrochim. Acta, 56, 381 (2010). https://doi.org/10.1016/j.electacta.2010.08.065
  19. M. J. Gonzalez, C. T. Hable, and M. S. Wrighton, 'Electrocatalytic oxidation of small carbohydrate fuels at Pt-Sn modified electrodes' J. Phys. Chem. B, 102, 9881 (1998). https://doi.org/10.1021/jp982792d
  20. C. Rice, S. Ha, and R. I. Masel, 'Direct formic acid fuel cells' J. Power Sources, 83, 111 (2002).