DOI QR코드

DOI QR Code

MRI Study on the Functional and Spatial Consistency of Resting State-Related Independent Components of the Brain Network

  • Jeong, Bum-Seok (Graduate School of Medical Science and Engineering (GSMSE), Korea Advanced Institute of Science and Technology) ;
  • Choi, Jee-Wook (Department of Psychiatry, Daejeon St. Mary's Hospital, The Catholic University of Korea College of Medicine) ;
  • Kim, Ji-Woong (Department of Psychiatry, College of Medical Science, Konyang University)
  • Published : 2012.06.01

Abstract

Objective: Resting-state networks (RSNs), including the default mode network (DMN), have been considered as markers of brain status such as consciousness, developmental change, and treatment effects. The consistency of functional connectivity among RSNs has not been fully explored, especially among resting-state-related independent components (RSICs). Materials and Methods: This resting-state fMRI study addressed the consistency of functional connectivity among RSICs as well as their spatial consistency between 'at day 1' and 'after 4 weeks' in 13 healthy volunteers. Results: We found that most RSICs, especially the DMN, are reproducible across time, whereas some RSICs were variable in either their spatial characteristics or their functional connectivity. Relatively low spatial consistency was found in the basal ganglia, a parietal region of left frontoparietal network, and the supplementary motor area. The functional connectivity between two independent components, the bilateral angular/supramarginal gyri/intraparietal lobule and bilateral middle temporal/occipital gyri, was decreased across time regardless of the correlation analysis method employed (Pearson's or partial correlation). Conclusion: RSICs showing variable consistency are different between spatial characteristics and functional connectivity. To understand the brain as a dynamic network, we recommend further investigation of both changes in the activation of specific regions and the modulation of functional connectivity in the brain network.

Keywords

References

  1. Fox MD, Raichle ME. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 2007;8:700-711 https://doi.org/10.1038/nrn2201
  2. Greicius MD, Srivastava G, Reiss AL, Menon V. Default-mode network activity distinguishes Alzheimer's disease from healthy aging: evidence from functional MRI. Proc Natl Acad Sci U S A 2004;101:4637-4642 https://doi.org/10.1073/pnas.0308627101
  3. Dang-Vu TT, Schabus M, Desseilles M, Albouy G, Boly M, Darsaud A, et al. Spontaneous neural activity during human slow wave sleep. Proc Natl Acad Sci U S A 2008;105:15160- 15165 https://doi.org/10.1073/pnas.0801819105
  4. Horovitz SG, Braun AR, Carr WS, Picchioni D, Balkin TJ, Fukunaga M, et al. Decoupling of the brain's default mode network during deep sleep. Proc Natl Acad Sci U S A 2009;106:11376-11381 https://doi.org/10.1073/pnas.0901435106
  5. Greicius MD, Kiviniemi V, Tervonen O, Vainionpää V, Alahuhta S, Reiss AL, et al. Persistent default-mode network connectivity during light sedation. Hum Brain Mapp 2008;29:839-847 https://doi.org/10.1002/hbm.20537
  6. Gusnard DA, Raichle ME, Raichle ME. Searching for a baseline: functional imaging and the resting human brain. Nat Rev Neurosci 2001;2:685-694 https://doi.org/10.1038/35094500
  7. Kim GW, Jeong GW, Kim TH, Baek HS, Oh SK, Kang HK, et al. Functional neuroanatomy associated with natural and urban scenic views in the human brain: 3.0T functional MR imaging. Korean J Radiol 2010;11:507-513 https://doi.org/10.3348/kjr.2010.11.5.507
  8. Helps S, James C, Debener S, Karl A, Sonuga-Barke EJ. Very low frequency EEG oscillations and the resting brain in young adults: a preliminary study of localisation, stability and association with symptoms of inattention. J Neural Transm 2008;115:279-285 https://doi.org/10.1007/s00702-007-0825-2
  9. de Pasquale F, Della Penna S, Snyder AZ, Lewis C, Mantini D, Marzetti L, et al. Temporal dynamics of spontaneous MEG activity in brain networks. Proc Natl Acad Sci U S A 2010;107:6040-6045 https://doi.org/10.1073/pnas.0913863107
  10. Rutter L, Carver FW, Holroyd T, Nadar SR, Mitchell-Francis J, Apud J, et al. Magnetoencephalographic gamma power reduction in patients with schizophrenia during resting condition. Hum Brain Mapp 2009;30:3254-3264 https://doi.org/10.1002/hbm.20746
  11. Zhang H, Duan L, Zhang YJ, Lu CM, Liu H, Zhu CZ. Testretest assessment of independent component analysis-derived resting-state functional connectivity based on functional near-infrared spectroscopy. Neuroimage 2011;55:607-615 https://doi.org/10.1016/j.neuroimage.2010.12.007
  12. Arieli A, Shoham D, Hildesheim R, Grinvald A. Coherent spatiotemporal patterns of ongoing activity revealed by realtime optical imaging coupled with single-unit recording in the cat visual cortex. J Neurophysiol 1995;73:2072-2093 https://doi.org/10.1152/jn.1995.73.5.2072
  13. Shmuel A, Leopold DA. Neuronal correlates of spontaneous fluctuations in fMRI signals in monkey visual cortex: implications for functional connectivity at rest. Hum Brain Mapp 2008;29:751-761 https://doi.org/10.1002/hbm.20580
  14. Jeong B, Kubicki M. Reduced task-related suppression during semantic repetition priming in schizophrenia. Psychiatry Res 2010;181:114-120 https://doi.org/10.1016/j.pscychresns.2009.09.005
  15. Pyka M, Beckmann CF, Schöning S, Hauke S, Heider D, Kugel H, et al. Impact of working memory load on FMRI resting state pattern in subsequent resting phases. PLoS One 2009;4:e7198 https://doi.org/10.1371/journal.pone.0007198
  16. Nelson B, Fornito A, Harrison BJ, Yücel M, Sass LA, Yung AR, et al. A disturbed sense of self in the psychosis prodrome: linking phenomenology and neurobiology. Neurosci Biobehav Rev 2009;33:807-817 https://doi.org/10.1016/j.neubiorev.2009.01.002
  17. Qiu MG, Ye Z, Li QY, Liu GJ, Xie B, Wang J. Changes of brain structure and function in ADHD children. Brain Topogr 2011;24:243-252 https://doi.org/10.1007/s10548-010-0168-4
  18. Broyd SJ, Demanuele C, Debener S, Helps SK, James CJ, Sonuga-Barke EJ. Default-mode brain dysfunction in mental disorders: a systematic review. Neurosci Biobehav Rev 2009;33:279-296 https://doi.org/10.1016/j.neubiorev.2008.09.002
  19. Assaf M, Jagannathan K, Calhoun VD, Miller L, Stevens MC, Sahl R, et al. Abnormal functional connectivity of default mode sub-networks in autism spectrum disorder patients. Neuroimage 2010;53:247-256 https://doi.org/10.1016/j.neuroimage.2010.05.067
  20. Barry RJ, Clarke AR, Hajos M, McCarthy R, Selikowitz M, Dupuy FE. Resting-state EEG gamma activity in children with attention-deficit/hyperactivity disorder. Clin Neurophysiol 2010;121:1871-1877 https://doi.org/10.1016/j.clinph.2010.04.022
  21. Cao X, Cao Q, Long X, Sun L, Sui M, Zhu C, et al. Abnormal resting-state functional connectivity patterns of the putamen in medication-naïve children with attention deficit hyperactivity disorder. Brain Res 2009;1303:195-206 https://doi.org/10.1016/j.brainres.2009.08.029
  22. Fair DA, Posner J, Nagel BJ, Bathula D, Dias TG, Mills KL, et al. Atypical default network connectivity in youth with attention-deficit/hyperactivity disorder. Biol Psychiatry 2010;68:1084-1091 https://doi.org/10.1016/j.biopsych.2010.07.003
  23. Helps SK, Broyd SJ, James CJ, Karl A, Chen W, Sonuga- Barke EJ. Altered spontaneous low frequency brain activity in attention deficit/hyperactivity disorder. Brain Res 2010;1322:134-143 https://doi.org/10.1016/j.brainres.2010.01.057
  24. de Haan W, Pijnenburg YA, Strijers RL, van der Made Y, van der Flier WM, Scheltens P, et al. Functional neural network analysis in frontotemporal dementia and Alzheimer's disease using EEG and graph theory. BMC Neurosci 2009;10:101 https://doi.org/10.1186/1471-2202-10-101
  25. Qi Z, Wu X, Wang Z, Zhang N, Dong H, Yao L, et al. Impairment and compensation coexist in amnestic MCI default mode network. Neuroimage 2010;50:48-55 https://doi.org/10.1016/j.neuroimage.2009.12.025
  26. Sorg C, Riedl V, Mühlau M, Calhoun VD, Eichele T, Läer L, et al. Selective changes of resting-state networks in individuals at risk for Alzheimer's disease. Proc Natl Acad Sci U S A 2007;104:18760-18765 https://doi.org/10.1073/pnas.0708803104
  27. Sambataro F, Blasi G, Fazio L, Caforio G, Taurisano P, Romano R, et al. Treatment with olanzapine is associated with modulation of the default mode network in patients with Schizophrenia. Neuropsychopharmacology 2010;35:904-912 https://doi.org/10.1038/npp.2009.192
  28. Barry RJ, Clarke AR, Hajos M, McCarthy R, Selikowitz M, Bruggemann JM. Acute atomoxetine effects on the EEG of children with attention-deficit/hyperactivity disorder. Neuropharmacology 2009;57:702-707 https://doi.org/10.1016/j.neuropharm.2009.08.003
  29. Liddle EB, Hollis C, Batty MJ, Groom MJ, Totman JJ, Liotti M, et al. Task-related default mode network modulation and inhibitory control in ADHD: effects of motivation and methylphenidate. J Child Psychol Psychiatry 2011;52:761-771 https://doi.org/10.1111/j.1469-7610.2010.02333.x
  30. Meindl T, Teipel S, Elmouden R, Mueller S, Koch W, Dietrich O, et al. Test-retest reproducibility of the default-mode network in healthy individuals. Hum Brain Mapp 2010;31:237-246
  31. Zuo XN, Kelly C, Adelstein JS, Klein DF, Castellanos FX, Milham MP. Reliable intrinsic connectivity networks: testretest evaluation using ICA and dual regression approach. Neuroimage 2010;49:2163-2177 https://doi.org/10.1016/j.neuroimage.2009.10.080
  32. Damaraju E, Phillips JR, Lowe JR, Ohls R, Calhoun VD, Caprihan A. Resting-state functional connectivity differences in premature children. Front Syst Neurosci 2010;4. pii: 23
  33. Castellanos FX, Margulies DS, Kelly C, Uddin LQ, Ghaffari M, Kirsch A, et al. Cingulate-precuneus interactions: a new locus of dysfunction in adult attention-deficit/hyperactivity disorder. Biol Psychiatry 2008;63:332-337 https://doi.org/10.1016/j.biopsych.2007.06.025
  34. Smyser CD, Inder TE, Shimony JS, Hill JE, Degnan AJ, Snyder AZ, et al. Longitudinal analysis of neural network development in preterm infants. Cereb Cortex 2010;20:2852- 2862 https://doi.org/10.1093/cercor/bhq035
  35. Smith SM, Miller KL, Salimi-Khorshidi G, Webster M, Beckmann CF, Nichols TE, et al. Network modelling methods for FMRI. Neuroimage 2011;54:875-891 https://doi.org/10.1016/j.neuroimage.2010.08.063
  36. Beckmann CF, DeLuca M, Devlin JT, Smith SM. Investigations into resting-state connectivity using independent component analysis. Philos Trans R Soc Lond B Biol Sci 2005;360:1001- 1013 https://doi.org/10.1098/rstb.2005.1634
  37. Beckmann CF, Smith SM. Probabilistic independent component analysis for functional magnetic resonance imaging. IEEE Trans Med Imaging 2004;23:137-152 https://doi.org/10.1109/TMI.2003.822821
  38. Filippini N, MacIntosh BJ, Hough MG, Goodwin GM, Frisoni GB, Smith SM, et al. Distinct patterns of brain activity in young carriers of the APOE-epsilon4 allele. Proc Natl Acad Sci U S A 2009;106:7209-7214 https://doi.org/10.1073/pnas.0811879106
  39. Uddin LQ, Kelly AM, Biswal BB, Xavier Castellanos F, Milham MP. Functional connectivity of default mode network components: correlation, anticorrelation, and causality. Hum Brain Mapp 2009;30:625-637 https://doi.org/10.1002/hbm.20531
  40. Damoiseaux JS, Rombouts SA, Barkhof F, Scheltens P, Stam CJ, Smith SM, et al. Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci U S A 2006;103:13848- 13853 https://doi.org/10.1073/pnas.0601417103
  41. Boly M, Phillips C, Tshibanda L, Vanhaudenhuyse A, Schabus M, Dang-Vu TT, et al. Intrinsic brain activity in altered states of consciousness: how conscious is the default mode of brain function? Ann N Y Acad Sci 2008;1129:119-129 https://doi.org/10.1196/annals.1417.015
  42. Deuker L, Bullmore ET, Smith M, Christensen S, Nathan PJ, Rockstroh B, et al. Reproducibility of graph metrics of human brain functional networks. Neuroimage 2009;47:1460-1468 https://doi.org/10.1016/j.neuroimage.2009.05.035
  43. Chang C, Glover GH. Time-frequency dynamics of restingstate brain connectivity measured with fMRI. Neuroimage 2010;50:81-98 https://doi.org/10.1016/j.neuroimage.2009.12.011
  44. Born RT, Bradley DC. Structure and function of visual area MT. Annu Rev Neurosci 2005;28:157-189 https://doi.org/10.1146/annurev.neuro.26.041002.131052
  45. Wolbers T, Zahorik P, Giudice NA. Decoding the direction of auditory motion in blind humans. Neuroimage 2011;56:681- 687 https://doi.org/10.1016/j.neuroimage.2010.04.266
  46. Kiviniemi V, Starck T, Remes J, Long X, Nikkinen J, Haapea M, et al. Functional segmentation of the brain cortex using high model order group PICA. Hum Brain Mapp 2009;30:3865-3886 https://doi.org/10.1002/hbm.20813

Cited by

  1. Aberrant Development of Functional Connectivity among Resting State-Related Functional Networks in Medication-Naïve ADHD Children vol.8, pp.12, 2012, https://doi.org/10.1371/journal.pone.0083516
  2. Study on the Relationships between Intrinsic Functional Connectivity of the Default Mode Network and Transient Epileptic Activity vol.5, pp.None, 2012, https://doi.org/10.3389/fneur.2014.00201
  3. Network Based Statistical Analysis Detects Changes Induced by Continuous Theta-Burst Stimulation on Brain Activity at Rest vol.5, pp.None, 2012, https://doi.org/10.3389/fpsyt.2014.00097
  4. Localizing hand motor area using resting-state fMRI: validated with direct cortical stimulation vol.156, pp.12, 2012, https://doi.org/10.1007/s00701-014-2236-0
  5. Language and Visual Perception Associations: Meta-Analytic Connectivity Modeling of Brodmann Area 37 vol.2015, pp.None, 2015, https://doi.org/10.1155/2015/565871