DOI QR코드

DOI QR Code

Ketyl radical formation of excited 1, 8-naphthalimides in protic polar solvent

  • Cho, Dae Won (Konkuk University-Fraunhofer ISE Next Generation Solar Cell Research Center, Konkuk University) ;
  • Cho, Dae Won (Department of Chemistry, Yeungnam University) ;
  • Park, Hea Jung (Department of Chemistry, Pusan National University) ;
  • Yoon, Ung Chan (Department of Chemistry, Pusan National University) ;
  • Lee, Myoung Hee (Konkuk University-Fraunhofer ISE Next Generation Solar Cell Research Center, Konkuk University) ;
  • Im, Chan (Konkuk University-Fraunhofer ISE Next Generation Solar Cell Research Center, Konkuk University)
  • 투고 : 2012.04.03
  • 심사 : 2012.06.27
  • 발행 : 2012.06.01

초록

Photoinduced electron-transfer process of 1,8-naphthalimide-linker-trimethylsilane (NI-O3-TMS, O3 = 3,6,9-trioxaundecyl) and NI-O3 has been investigated using the transient absorption measurements in $CH_3CN$ and $CH_3CN/H_2O$. The excitation of NI-O3-TMS in $CH_3CN$ produced the NI radical anion ($NI^{{\cdot}-}$) with a transient absorption band around 413 nm, via the intermolecular electron-transfer between NI moieties in the excited singlet state. In contrast, in a protic polar solvent mixture of $CH_3CN/H_2O$, a proton abstraction process occurred from $NI^{{\cdot}-}$ to generate the NI ketyl radical ($NIH^{\cdot}$), which showed a transient absorption band around 405 nm. The decay time constants of $NIH^{\cdot}$ were quite long compared to those of $NI^{{\cdot}-}$ in $CH_3CN$.

키워드

참고문헌

  1. Saito, I.; Takayama, M.; Sugiyama, H.; Nakatani, K.; Tsuchida, A.; Yamamoto, M. J. Am. Chem. Soc. 1995, 117, 6406. https://doi.org/10.1021/ja00128a050
  2. Rogers, J. E.; Kelly, L. A. J. Am. Chem. Soc. 1999, 121, 3854. https://doi.org/10.1021/ja9841299
  3. Kawai, K.; Osakada, Y.; Matsutani, E.; Majima, T. J. Phys. Chem. B 2010, 114, 10195. https://doi.org/10.1021/jp102483k
  4. Takada, T.; Takeda, Y.; Fujitsuka, M.; Majima, T. J. Am. Chem. Soc. 2009, 131, 6656. https://doi.org/10.1021/ja9009919
  5. Cho, D. W.; Fujitsuka, M.; Yoon, U. C.; Majima, T. Phys. Chem. Chem. Phys. 2008, 10, 4393. https://doi.org/10.1039/b802074d
  6. Cho, D. W.; Fujitsuka, M.; Sugimoto, A.; Majima, T. J. Phys. Chem. A, 2008, 112, 7208. https://doi.org/10.1021/jp801983b
  7. Cho, D. W.; Fujitsuka, M.; Sugimoto, A.; Yoon, U. C.; Mariano, P. S.; Majima, T. J. Phys. Chem. B, 2006, 110, 11062. https://doi.org/10.1021/jp057557r
  8. Cho, D. W.; Fujitsuka, M.; Yoon, U. C.; Majima, T. J. Photochem. Photobiol. A: Chem. 2007, 190, 101. https://doi.org/10.1016/j.jphotochem.2007.03.018
  9. Cho, D. W.; Yoon, U. C.; Mariano, P. S. Acc. Chem. Res. 2011, 44, 204. https://doi.org/10.1021/ar100125j
  10. Cho, D. W.; Fujitsuka, M.; Ryu, J. H.; Lee, M. H.; Kim, H. K.; Majima, T.; Im, C. Chem. Comm., 2012, in press
  11. Jones II, G.; Kumar, S. J. Photochem. Photobiol. A: Chem. 2003, 160, 139. https://doi.org/10.1016/S1010-6030(03)00207-7
  12. Aveline, B. M.; Matsugo, S.; Redmond, R. W. J. Am. Chem. Soc. 1997, 119, 11785. https://doi.org/10.1021/ja971993c
  13. Li, H. -Q.; Jiang, Z. -Q.; Wang, X.; Pan, Y.; Wang, F.; Yu, S. -O. Res. Chem. Intermed., 2004, 30, 369. https://doi.org/10.1163/1568567041257616
  14. Smanta, A.; Saroja, G. J. Photochem. Photobiol. A: Chem., 1994, 84, 19. https://doi.org/10.1016/1010-6030(94)03846-5
  15. Wintgens, V.; Valet, P.; Kossanyi, J.; Biczok, L.; Demeter, A.; Berces, T. J. Chem. Soc., Faraday Trans. 1994, 90, 411. https://doi.org/10.1039/ft9949000411
  16. Demeter, A.; Biczok, L.; Berces, T.; Wintgens, V.; Valat, P.; Kossanyi, J. J. Phys. Chem. 1993, 97, 3217. https://doi.org/10.1021/j100115a025