DOI QR코드

DOI QR Code

Synthesis and characterization of novel polyimides with diamines containing thiophene moieties

  • Yoon, Mu-Ju (School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST)) ;
  • Yoon, Tae-Ho (School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST))
  • Received : 2012.04.17
  • Accepted : 2012.05.18
  • Published : 2012.06.01

Abstract

Noble diamine monomers containing thiophene moiety were prepared, such as 2,5'''-diamino-2, 2':5', 2'':5'', 2'''-quaterthiophene (4TDA) and 2, 5'''''-diamino-3'', 4'''-dihexyl-2,2':5', 2'':5'', 2''':5''', 2'''':5'''', 2'''''-sexithiophene (6TDA). Then, these monomers were utilized to prepare polyimides with 3,6-diphenylpromellitic dianhydride (DPPMDA), 3,6-di(4'-trifluoro-methylphenyl) pyromellitic dianhydride (6FPMDA) or 3,6-di(3',5'-bis (trifluoromethyl)phenyl) pyromellitic dianhydride (12FPMDA) via a conventional two-step process. The polyimides were characterized by FT-IR, TGA and DSC, and then subjected CV, UV-vis and PL measurements. The polyimides containing thiophene moiety exhibited high glass transition temperatures ($280{\sim}310^{\circ}C$) and excellent thermal stability (> $420^{\circ}C$) in air as well as green emission (535~586 nm).

Keywords

References

  1. Gunes, S.; Neugebauer, H.; Sariciftci, N. S. Chem. Rev. 2007, 107, 1324-1338. https://doi.org/10.1021/cr050149z
  2. Bernius, M.T.; Inbasekaran, M.; O'Brien, J.; Wu, W. Adv. Mater. 2000, 12, 1737-1750. https://doi.org/10.1002/1521-4095(200012)12:23<1737::AID-ADMA1737>3.0.CO;2-N
  3. Park, J. W.; Park, S. J.; Kim, Y.H.; Shin, D. C.; You, H.; Kwon, S. K. Polymer 2009, 50, 102-106. https://doi.org/10.1016/j.polymer.2008.10.056
  4. Pogantsch, A.; Wenzl, F. P.; List, E. J. W.; Leising, G.; Grimsdale, A.C.; Müllen, K. Adv. Mater. 2002, 14, 1061-1064. https://doi.org/10.1002/1521-4095(20020805)14:15<1061::AID-ADMA1061>3.0.CO;2-6
  5. Mishra, A.K.; Graf, M.; Grasse, F.; Jacob, J.; List, E.J.W.; Müllen, K. Chem. Mater. 2006, 18, 2879-2885. https://doi.org/10.1021/cm060072a
  6. Ng, W. Y.; Gong, X.; Chan, W. K. Chem. Mater. 1999, 11, 1165-1170. https://doi.org/10.1021/cm981142j
  7. Kotov, B. V.; Rumyantsev, B. M.; Berendyaev, V. I.; Lunina, E. V.; Bespalov, B. P.; Frankevich, E. L.; Triebel, M. M. Synth. Met. 2001, 121, 1553-1554. https://doi.org/10.1016/S0379-6779(00)01497-1
  8. Jung, M. S.; Lee, T. W.; Lee, J. H.; Shon, B. H.; Jung, I. S.; Polymer 2006, 47, 2670-2676. https://doi.org/10.1016/j.polymer.2006.02.021
  9. Hsiao, S. H.; Liou, G. S.; Kung, Y. C.; Lee, Y. J.; Eur. Polym. J. 2010, 46, 1355-1366. https://doi.org/10.1016/j.eurpolymj.2010.03.016
  10. Choi, J .K.; Cho, K.; Yoon, T. H. Synth. Met. 2010, 160, 1938-1944. https://doi.org/10.1016/j.synthmet.2010.07.013
  11. Takahashi, M.; Masui, K.; Sekiguchi, H.; Kobayashi, N.; Mori, A.; Funahashi M.; Tamaoki, N. J. Am. Chem. Soc. 2006, 128, 10930-10933 https://doi.org/10.1021/ja060749v
  12. Dingemans, T. J.; Murthy N. S.; Samulski, E. T. J. Phys. Chem. B. 2001, 105, 8845-8860. https://doi.org/10.1021/jp010869j
  13. Myung, B. Y.; Kim J. J.; Yoon, T. H. J. Polym. Sci., Part A: Poly. Chem. 2002, 40(23), 4217-4227. https://doi.org/10.1002/pola.10512
  14. Harris, F. W.; Lin, S. H.; Li, F.; Cheng, S. Z. D. Polymer 1996, 37, 5049-5057. https://doi.org/10.1016/0032-3861(96)00365-5
  15. Tomikawa, M.; Cheng S. Z. D.; Harris, F.W. Polym. Preprint. 1995, 36, 707-708 https://doi.org/10.1016/0032-3861(95)93098-7
  16. Sensfuss, S.; Al‐Ibrahim, M.; Organic Photovoltaics: Mechanism, Materials and Devices, CRC Press, Boca Raton, FL, 2005, p.534.