DOI QR코드

DOI QR Code

Ginseng and Diabetes: The Evidences from In Vitro, Animal and Human Studies

  • Yuan, Hai-Dan (Department of Pharmacology and Clinical Pharmacy, College of Pharmacy, Kyung Hee University) ;
  • Kim, Jung-Tae (Department of Pharmacology and Clinical Pharmacy, College of Pharmacy, Kyung Hee University) ;
  • Kim, Sung-Hoon (Cancer Preventive Material Development Research Center, College of Oriental Medicine, Kyung Hee University) ;
  • Chung, Sung-Hyun (Department of Pharmacology and Clinical Pharmacy, College of Pharmacy, Kyung Hee University)
  • 투고 : 2011.10.13
  • 심사 : 2011.12.02
  • 발행 : 2012.01.11

초록

Panax ginseng exhibits pleiotropic beneficial effects on cardiovascular system, central nervous system, and immune system. In the last decade, numerous preclinical findings suggest ginseng as a promising therapeutic agent for diabetes prevention and treatment. The mechanism of ginseng and its active components is complex and is demonstrated to either modulate insulin production/secretion, glucose metabolism and uptake, or inflammatory pathway in both insulin-dependent and insulin-independent manners. However, human studies are remained obscure because of contradictory results. While more studies are warranted to further understand these contradictions, ginseng holds promise as a therapeutic agent for diabetes prevention and treatment. This review summarizes the evidences for the therapeutic potential of ginseng and ginsenosides from in vitro studies, animal studies and human clinical trials with a focus on diverse molecular targets including an AMP-activated protein kinase signaling pathway.

키워드

참고문헌

  1. Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 2004;27:1047-1053. https://doi.org/10.2337/diacare.27.5.1047
  2. Kim DJ. The epidemiology of diabetes in Korea. Diabetes Metab J 2011;35:303-308. https://doi.org/10.4093/dmj.2011.35.4.303
  3. McCullough AJ. Epidemiology of the metabolic syndrome in the USA. J Dig Dis 2011;12:333-340. https://doi.org/10.1111/j.1751-2980.2010.00469.x
  4. Warren RE. The stepwise approach to the management of type 2 diabetes. Diabetes Res Clin Pract 2004;65 Suppl 1:S3-S8. https://doi.org/10.1016/j.diabres.2004.07.002
  5. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. The Diabetes Control and Complications Trial Research Group. N Engl J Med 1993;329:977-986. https://doi.org/10.1056/NEJM199309303291401
  6. Mohler ML, He Y, Wu Z, Hwang DJ, Miller DD. Recent and emerging anti-diabetes targets. Med Res Rev 2009;29:125-195. https://doi.org/10.1002/med.20142
  7. Xie JT, Mchendale S, Yuan CS. Ginseng and diabetes. Am J Chin Med 2005;33:397-404. https://doi.org/10.1142/S0192415X05003004
  8. Huang KC. The pharmacology of Chinese herbs. Boca Raton: CRC Press, 1999.
  9. Sotaniemi EA, Haapakoski E, Rautio A. Ginseng therapy in non-insulin-dependent diabetic patients. Diabetes Care 1995;18:1373-1375. https://doi.org/10.2337/diacare.18.10.1373
  10. Konno C, Sugiyama K, Kano M, Takahashi M, Hikino H. Isolation and hypoglycaemic activity of panaxans A, B, C, D and E, glycans of Panax ginseng roots. Planta Med 1984;50:434-436. https://doi.org/10.1055/s-2007-969757
  11. Oshima Y, Konno C, Hikino H. Isolation and hypoglycemic activity of panaxans I, J, K and L, glycans of Panax ginseng roots. J Ethnopharmacol 1985;14:255-259. https://doi.org/10.1016/0378-8741(85)90091-1
  12. Konno C, Murakami M, Oshima Y, Hikino H. Isolation and hypoglycemic activity of panaxans Q, R, S, T and U, glycans of Panax ginseng roots. J Ethnopharmacol 1985;14:69-74. https://doi.org/10.1016/0378-8741(85)90030-3
  13. Oshima Y, Sato K, Hikino H. Isolation and hypoglycemic activity of quinquefolans A, B, and C, glycans of Panax quinquefolium roots. J Nat Prod 1987;50:188-190. https://doi.org/10.1021/np50050a010
  14. Jia L, Zhao Y. Current evaluation of the millennium phytomedicine-ginseng (I): etymology, pharmacognosy, phytochemistry, market and regulations. Curr Med Chem 2009;16:2475-2484. https://doi.org/10.2174/092986709788682146
  15. Tetsutani T, Yamamura M, Yamaguchi T, Onoyama O, Kono M. Can red ginseng control blood glucose in diabetic patients. Ginseng Rev 2000;28:44-47.
  16. Vuksan V, Xu Z, Jenkins AL, Beljan-Zdravkovic U, Sievenpiper JL, Leiter LA, Josse RG, Stavro MP. American ginseng improves long term glycemic control in type 2 diabetes: double-blind placebo controlled crossover trial. American Diabetes Association Annual Meeting [abstract]. Diabetes 2000;Suppl 1:A95. Meeting abstract no. 384.
  17. Yeh GY, Eisenberg DM, Kaptchuk TJ, Phillips RS. Systematic review of herbs and dietary supplements for glycemic control in diabetes. Diabetes Care 2003;26:1277-1294. https://doi.org/10.2337/diacare.26.4.1277
  18. Vuksan V, Sievenpiper JL. Herbal remedies in the management of diabetes: lessons learned from the study of ginseng. Nutr Metab Cardiovasc Dis 2005;15:149-160. https://doi.org/10.1016/j.numecd.2005.05.001
  19. Vuksan V, Stavro MP, Sievenpiper JL, Beljan-Zdravkovic U, Leiter LA, Josse RG, Xu Z. Similar postprandial glycemic reductions with escalation of dose and administration time of American ginseng in type 2 diabetes. Diabetes Care 2000;23:1221-1226. https://doi.org/10.2337/diacare.23.9.1221
  20. Vuksan V, Sievenpiper JL, Koo VY, Francis T, Beljan- Zdravkovic U, Xu Z, Vidgen E. American ginseng (Panax quinquefolius L) reduces postprandial glycemia in nondiabetic subjects and subjects with type 2 diabetes mellitus. Arch Intern Med 2000;160:1009-1013. https://doi.org/10.1001/archinte.160.7.1009
  21. Vuksan V, Sievenpiper JL, Xu Z, Wong EY, Jenkins AL, Beljan-Zdravkovic U, Leiter LA, Josse RG, Stavro MP. Konjac-Mannan and American ginsing: emerging alternative therapies for type 2 diabetes mellitus. J Am Coll Nutr 2001;20(5 Suppl):370S-380S.
  22. Vuksan V, Sievenpiper JL, Wong J, Xu Z, Beljan- Zdravkovic U, Arnason JT, Assinewe V, Stavro MP, Jenkins AL, Leiter LA et al. American ginseng (Panax quinquefolius L.) attenuates postprandial glycemia in a time-dependent but not dose-dependent manner in healthy individuals. Am J Clin Nutr 2001;73:753-758.
  23. Sievenpiper JL, Arnason JT, Leiter LA, Vuksan V. Null and opposing effects of Asian ginseng (Panax ginseng C.A. Meyer) on acute glycemia: results of two acute dose escalation studies. J Am Coll Nutr 2003;22:524-532.
  24. Vuksan V, Sung MK, Sievenpiper JL, Stavro PM, Jenkins AL, Di Buono M, Lee KS, Leiter LA, Nam KY, Arnason JT et al. Korean red ginseng (Panax ginseng) improves glucose and insulin regulation in well-controlled, type 2 diabetes: results of a randomized, double-blind, placebocontrolled study of effi cacy and safety. Nutr Metab Cardiovasc Dis 2008;18:46-56. https://doi.org/10.1016/j.numecd.2006.04.003
  25. Ma SW, Benzie IF, Chu TT, Fok BS, Tomlinson B, Critchley LA. Effect of Panax ginseng supplementation on biomarkers of glucose tolerance, antioxidant status and oxidative stress in type 2 diabetic subjects: results of a placebo-controlled human intervention trial. Diabetes Obes Metab 2008;10:1125-1127. https://doi.org/10.1111/j.1463-1326.2008.00858.x
  26. Reay JL, Scholey AB, Milne A, Fenwick J, Kennedy DO. Panax ginseng has no effect on indices of glucose regulation following acute or chronic ingestion in healthy volunteers. Br J Nutr 2009;101:1673-1678. https://doi.org/10.1017/S0007114508123418
  27. Reeds DN, Patterson BW, Okunade A, Holloszy JO, Polonsky KS, Klein S. Ginseng and ginsenoside Re do not improve $\beta$-cell function or insulin sensitivity in overweight and obese subjects with impaired glucose tolerance or diabetes. Diabetes Care 2011;34:1071-1076. https://doi.org/10.2337/dc10-2299
  28. Sievenpiper JL, Arnason JT, Leiter LA, Vuksan V. Decreasing, null and increasing effects of eight popular types of ginseng on acute postprandial glycemic indices in healthy humans: the role of ginsenosides. J Am Coll Nutr 2004;23:248-258.
  29. Ni HX, Yu NJ, Yang XH. The study of ginsenoside on PPARgamma expression of mononuclear macrophage in type 2 diabetes. Mol Biol Rep 2010;37:2975-2979. https://doi.org/10.1007/s11033-009-9864-0
  30. Miller LG. Herbal medicinals: selected clinical considerations focusing on known or potential drug-herb interactions. Arch Intern Med 1998;158:2200-2211. https://doi.org/10.1001/archinte.158.20.2200
  31. Ernst E. The risk-benefit profile of commonly used herbal therapies: Ginkgo, St. John's Wort, Ginseng, Echinacea, Saw Palmetto, and Kava. Ann Intern Med 2002;136:42-53. https://doi.org/10.7326/0003-4819-136-1-200201010-00010
  32. Wang BX, Zhou QL, Yang M, Wang Y, Cui ZY, Liu YQ, Ikejima T. Hypoglycemic mechanism of ginseng glycopeptide. Acta Pharmacol Sin 2003;24:61-66.
  33. Rotshteyn Y, Zito SW. Application of modified in vitro screening procedure for identifying herbals possessing sulfonylurea-like activity. J Ethnopharmacol 2004;93(2- 3):337-344. https://doi.org/10.1016/j.jep.2004.04.007
  34. Luo JZ, Luo L. American ginseng stimulates insulin production and prevents apoptosis through regulation of uncoupling protein-2 in cultured beta cells. Evid Based Complement Alternat Med 2006;3:365-372. https://doi.org/10.1093/ecam/nel026
  35. Kim HY, Kim K. Protective effect of ginseng on cytokineinduced apoptosis in pancreatic beta-cells. J Agric Food Chem 2007;55:2816-2823. https://doi.org/10.1021/jf062577r
  36. Kim K, Kim HY. Korean red ginseng stimulates insulin release from isolated rat pancreatic islets. J Ethnopharmacol 2008;120:190-195. https://doi.org/10.1016/j.jep.2008.08.006
  37. Kim JJ, Xiao H, Tan Y, Wang ZZ, Paul Seale J, Qu X. The effects and mechanism of saponins of Panax notoginseng on glucose metabolism in 3T3-L1 cells. Am J Chin Med 2009;37:1179-1189. https://doi.org/10.1142/S0192415X09007582
  38. Yuan HD, Chung SH. Protective effects of fermented ginseng on streptozotocin-induced pancreatic beta-cell damage through inhibition of NF-kappaB. Int J Mol Med 2010;25:53-58.
  39. Shang W, Yang Y, Zhou L, Jiang B, Jin H, Chen M. Ginsenoside $Rb_1$ stimulates glucose uptake through insulinlike signaling pathway in 3T3-L1 adipocytes. J Endocrinol 2008;198:561-569. https://doi.org/10.1677/JOE-08-0104
  40. Park S, Ahn IS, Kwon DY, Ko BS, Jun WK. Ginsenosides $Rb_1$ and $Rg_1$ suppress triglyceride accumulation in 3T3-L1 adipocytes and enhance beta-cell insulin secretion and viability in Min6 cells via PKA-dependent pathways. Biosci Biotechnol Biochem 2008;72:2815-2823. https://doi.org/10.1271/bbb.80205
  41. Lee KT, Jung TW, Lee HJ, Kim SG, Shin YS, Whang WK. The antidiabetic effect of ginsenoside Rb2 via activation of AMPK. Arch Pharm Res 2011;34:1201-1208. https://doi.org/10.1007/s12272-011-0719-6
  42. Lee MS, Hwang JT, Kim SH, Yoon S, Kim MS, Yang HJ, Kwon DY. Ginsenoside Rc, an active component of Panax ginseng, stimulates glucose uptake in C2C12 myotubes through an AMPK-dependent mechanism. J Ethnopharmacol 2010;127:771-776. https://doi.org/10.1016/j.jep.2009.11.022
  43. Kim M, Ahn BY, Lee JS, Chung SS, Lim S, Park SG, Jung HS, Lee HK, Park KS. The ginsenoside $Rg_3$ has a stimulatory effect on insulin signaling in L6 myotubes. Biochem Biophys Res Commun 2009;389:70-73. https://doi.org/10.1016/j.bbrc.2009.08.088
  44. Kim DY, Yuan HD, Huang B, Quan HY, Chung SH. Ginsenoside 20(R)-$Rg_3$ stimulates glucose uptake in C2C12 myotubes via CaMKK-AMPK pathways. Food Sci Biotechnol 2010;19:1277-1282. https://doi.org/10.1007/s10068-010-0182-z
  45. Kim K, Park M, Young Kim H. Ginsenoside $Rg_3$ suppresses palmitate-induced apoptosis in MIN6N8 pancreatic beta-cells. J Clin Biochem Nutr 2010;46:30-35. https://doi.org/10.3164/jcbn.09-49
  46. Lee OH, Lee HH, Kim JH, Lee BY. Effect of ginsenosides $Rg_3$ and Re on glucose transport in mature 3T3-L1 adipocytes. Phytother Res 2011;25:768-773.
  47. Chang TC, Huang SF, Yang TC, Chan FN, Lin HC, Chang WL. Effect of ginsenosides on glucose uptake in human Caco-2 cells is mediated through altered Na+/ glucose cotransporter 1 expression. J Agric Food Chem 2007;55:1993-1998. https://doi.org/10.1021/jf062714k
  48. Park MJ, Bae CS, Lim SK, Kim DI, Lim JC, Kim JC, Han HJ, Moon JH, Kim KY, Yoon KC et al. Effect of protopanaxadiol derivatives in high glucose-induced fibronectin expression in primary cultured rat mesangial cells: role of mitogen-activated protein kinases and Akt. Arch Pharm Res 2010;33:151-157. https://doi.org/10.1007/s12272-010-2237-3
  49. Quan HY, Yuan HD, Jung MS, Ko SK, Park YG, Chung SH. Ginsenoside Re lowers blood glucose and lipid levels via activation of AMP-activated protein kinase in HepG2 cells and high-fat diet fed mice. Int J Mol Med 2012;29:73-80.
  50. Kim SJ, Yuan HD, Chung SH. Ginsenoside $Rg_1$ suppresses hepatic glucose production via AMP-activated protein kinase in HepG2 cells. Biol Pharm Bull 2010;33:325-328. https://doi.org/10.1248/bpb.33.325
  51. Han KL, Jung MH, Sohn JH, Hwang JK. Ginsenoside 20S-protopanaxatriol (PPT) activates peroxisome proliferator-activated receptor gamma (PPARgamma) in 3T3-L1 adipocytes. Biol Pharm Bull 2006;29:110-113. https://doi.org/10.1248/bpb.29.110
  52. Xie JT, Wang CZ, Ni M, Wu JA, Mehendale SR, Aung HH, Foo A, Yuan CS. American ginseng berry juice intake reduces blood glucose and body weight in ob/ob mice. J Food Sci 2007;72:S590-S594. https://doi.org/10.1111/j.1750-3841.2007.00481.x
  53. Xie JT, Aung HH, Wu JA, Attel AS, Yuan CS. Effects of American ginseng berry extract on blood glucose levels in ob/ob mice. Am J Chin Med 2002;30:187-194. https://doi.org/10.1142/S0192415X02000442
  54. Xie JT, Mehendale SR, Wang A, Han AH, Wu JA, Osinski J, Yuan CS. American ginseng leaf: ginsenoside analysis and hypoglycemic activity. Pharmacol Res 2004;49:113-117. https://doi.org/10.1016/j.phrs.2003.07.015
  55. Babish JG, Pacioretty LM, Bland JS, Minich DM, Hu J, Tripp ML. Antidiabetic screening of commercial botanical products in 3T3-L1 adipocytes and db/db mice. J Med Food 2010;13:535-547. https://doi.org/10.1089/jmf.2009.0110
  56. Amin KA, Awad EM, Nagy MA. Effects of Panax quinquefolium on streptozotocin-induced diabetic rats: role of C-peptide, nitric oxide and oxidative stress. Int J Clin Exp Med 2011;4:136-147.
  57. Banz WJ, Iqbal MJ, Bollaert M, Chickris N, James B, Higginbotham DA, Peterson R, Murphy L. Ginseng modifies the diabetic phenotype and genes associated with diabetes in the male ZDF rat. Phytomedicine 2007;14:681-689. https://doi.org/10.1016/j.phymed.2007.06.003
  58. Attele AS, Zhou YP, Xie JT, Wu JA, Zhang L, Dey L, Pugh W, Rue PA, Polonsky KS, Yuan CS. Antidiabetic effects of Panax ginseng berry extract and the identifi cation of an effective component. Diabetes 2002;51:1851-1858. https://doi.org/10.2337/diabetes.51.6.1851
  59. Yuan HD, Kin SJ, Quan HY, Huang B, Chung SH. Ginseng leaf extract prevents high fat diet-induced hyperglycemia and hyperlipidemia through AMPK activation. J Ginseng Res 2010;34:369-375. https://doi.org/10.5142/jgr.2010.34.4.369
  60. Xie JT, Wang CZ, Wang AB, Wu J, Basila D, Yuan CS. Antihyperglycemic effects of total ginsenosides from leaves and stem of Panax ginseng. Acta Pharmacol Sin 2005;26:1104-1110. https://doi.org/10.1111/j.1745-7254.2005.00156.x
  61. Yuan HD, Shin EJ, Chung SH. Anti-diabetic effect and mechanism of Korean red ginseng in C57BL/KsJ db/db mice. J Ginseng Res 2008;32:187-193. https://doi.org/10.5142/JGR.2008.32.3.187
  62. Yuan HD, Shin EJ, Chung SH. Anti-diabetic mechanism study of Korean red ginseng by transcriptomics. Yakhak Hoeji 2008;52:345-354.
  63. Park MY, Lee KS, Sung MK. Effects of dietary mulberry, Korean red ginseng, and banaba on glucose homeostasis in relation to PPAR-alpha, PPAR-gamma, and LPL mRNA expressions. Life Sci 2005;77:3344-3354. https://doi.org/10.1016/j.lfs.2005.05.043
  64. Lee HJ, Lee YH, Park SK, Kang ES, Kim HJ, Lee YC, Choi CS, Park SE, Ahn CW, Cha BS et al. Korean red ginseng (Panax ginseng) improves insulin sensitivity and attenuates the development of diabetes in Otsuka Long- Evans Tokushima fatty rats. Metabolism 2009;58:1170-1177. https://doi.org/10.1016/j.metabol.2009.03.015
  65. Liu Z, Wang LJ, Li X, Hu JN, Chen Y, Ruan CC, Sun GZ. Hypoglycemic effects of malonyl-ginsenosides extracted from roots of Panax ginseng on streptozotocin-induced diabetic mice. Phytother Res 2009;23:1426-1430. https://doi.org/10.1002/ptr.2796
  66. Tu Q, Qin J, Dong H, Lu F, Guan W. Effects of Panax notoginoside on the expression of TGF-$\beta$1 and Smad-7 in renal tissues of diabetic rats. J Huazhong Univ Sci Technolog Med Sci 2011;31:190-193. https://doi.org/10.1007/s11596-011-0250-5
  67. Yang CY, Wang J, Zhao Y, Shen L, Jiang X, Xie ZG, Liang N, Zhang L, Chen ZH. Anti-diabetic effects of Panax notoginseng saponins and its major anti-hyperglycemic components. J Ethnopharmacol 2010;130:231-236. https://doi.org/10.1016/j.jep.2010.04.039
  68. Yun SN, Ko SK, Lee KH, Chung SH. Vinegar-processed ginseng radix improves metabolic syndrome induced by a high fat diet in ICR mice. Arch Pharm Res 2007;30:587-595. https://doi.org/10.1007/BF02977653
  69. Kim DY, Park JS, Yuan HD, Chung SH. Fermented ginseng attenuates hepatic lipid accumulation and hyperglycemia through AMPK activation. Food Sci Biotechnol 2009;18:172-178.
  70. Yuan HD, Chung SH. Fermented ginseng protects streptozotocin- induced damage in rat pancreas by inhibiting nuclear factor-kappaB. Phytother Res 2010;24 Suppl 2:S190-S195. https://doi.org/10.1002/ptr.3076
  71. Kang KS, Yamabe N, Kim HY, Park JH, Yokozawa T. Effects of heat-processed ginseng and its active component ginsenoside 20(S)-$Rg_3$ on the progression of renal damage and dysfunction in type 2 diabetic Otsuka Long-Evans Tokushima Fatty rats. Biol Pharm Bull 2010;33:1077-1081. https://doi.org/10.1248/bpb.33.1077
  72. Kang KS, Kim HY, Yamabe N, Nagai R, Yokozawa T. Protective effect of sun ginseng against diabetic renal damage. Biol Pharm Bull 2006;29:1678-1684. https://doi.org/10.1248/bpb.29.1678
  73. Kim HY, Kang KS, Yamabe N, Nagai R, Yokozawa T. Protective effect of heat-processed American ginseng against diabetic renal damage in rats. J Agric Food Chem 2007;55:8491-8497. https://doi.org/10.1021/jf071770y
  74. Kim HY, Kang KS, Yamabe N, Yokozawa T. Comparison of the effects of Korean ginseng and heat-processed Korean ginseng on diabetic oxidative stress. Am J Chin Med 2008;36:989-1004. https://doi.org/10.1142/S0192415X08006417
  75. Yuan HD, Quan HY, Jung MS, Kim SJ, Huang B, Kim DY, Chung SH. Anti-diabetic effect of pectinase-processed ginseng radix (GINST) in high fat diet-fed ICR mice. J Ginseng Res 2011;35:308-314. https://doi.org/10.5142/jgr.2011.35.3.308
  76. Yun SN, Ko SK, Moon SJ, Chung SH. Wild ginseng improves the high-fat diet induced metabolic syndrome in ICR mice. Yakhak Hoeji 2005;49:284-290.
  77. Kang KS, Yamabe N, Kim HY, Park JH, Yokozawa T. Therapeutic potential of 20(S)-ginsenoside Rg(3) against streptozotocin-induced diabetic renal damage in rats. Eur J Pharmacol 2008;591:266-272. https://doi.org/10.1016/j.ejphar.2008.06.077
  78. Lee WK, Kao ST, Liu IM, Cheng JT. Increase of insulin secretion by ginsenoside Rh2 to lower plasma glucose in Wistar rats. Clin Exp Pharmacol Physiol 2006;33:27-32. https://doi.org/10.1111/j.1440-1681.2006.04319.x
  79. Lai DM, Tu YK, Liu IM, Chen PF, Cheng JT. Mediation of beta-endorphin by ginsenoside Rh2 to lower plasma glucose in streptozotocin-induced diabetic rats. Planta Med 2006;72:9-13. https://doi.org/10.1055/s-2005-916177
  80. Choi YS, Han GC, Han EJ, Park KJ, Park JS, Sung JH, Chung SH. Antidiabetic activity of IH-901 in db/db mice. Yakhak Hoeji 2006;50:345-350.
  81. Han GC, Ko SK, Sung JH, Chung SH. Compound K enhances insulin secretion with benefi cial metabolic effects in db/db mice. J Agric Food Chem 2007;55:10641-10648. https://doi.org/10.1021/jf0722598
  82. Yuan HD, Kim SJ, Chung SH. Beneficial effects of IH-901 on glucose and lipid metabolisms via activating adenosine monophosphate-activated protein kinase and phosphatidylinositol-3 kinase pathways. Metabolism 2011;60:43-51. https://doi.org/10.1016/j.metabol.2009.12.024
  83. Yoon SH, Han EJ, Sung JH, Chung SH. Anti-diabetic effects of compound K versus metformin versus compound K-metformin combination therapy in diabetic db/db mice. Biol Pharm Bull 2007;30:2196-2200. https://doi.org/10.1248/bpb.30.2196
  84. Cho WC, Yip TT, Chung WS, Lee SK, Leung AW, Cheng CH, Yue KK. Altered expression of serum protein in ginsenoside Re-treated diabetic rats detected by SELDI-TOF MS. J Ethnopharmacol 2006;108:272-279. https://doi.org/10.1016/j.jep.2006.05.009
  85. Cho WC. Application of proteomics in Chinese medicine research. Am J Chin Med 2007;35:911-922. https://doi.org/10.1142/S0192415X07005375
  86. Xie JT, Mehendale SR, Li X, Quigg R, Wang X, Wang CZ, Wu JA, Aung HH, A Rue P, Bell GI et al. Antidiabetic effect of ginsenoside Re in ob/ob mice. Biochim Biophys Acta 2005;1740:319-325. https://doi.org/10.1016/j.bbadis.2004.10.010
  87. Zhang Z, Li X, Lv W, Yang Y, Gao H, Yang J, Shen Y, Ning G. Ginsenoside Re reduces insulin resistance through inhibition of c-Jun NH2-terminal kinase and nuclear factor-kappaB. Mol Endocrinol 2008;22:186-195. https://doi.org/10.1210/me.2007-0119
  88. Chung SH, Choi CG, Park SH. Comparisons between white ginseng radix and rootlet for antidiabetic activity and mechanism in KKAy mice. Arch Pharm Res 2001;24:214-218. https://doi.org/10.1007/BF02978260
  89. Haffner SM. Pre-diabetes, insulin resistance, inflammation and CVD risk. Diabetes Res Clin Pract 2003;61 Suppl 1:S9-S18. https://doi.org/10.1016/S0168-8227(03)00122-0
  90. Zozulinska D, Wierusz-Wysocka BT. Type 2 diabetes mellitus as infl ammatory disease. Diabetes Res Clin Pract 2006;74(Suppl):S12-S16. https://doi.org/10.1016/j.diabres.2006.06.007
  91. Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, Wu M, Ventre J, Doebber T, Fujii N et al. Role of AMPactivated protein kinase in mechanism of metformin action. J Clin Invest 2001;108:1167-1174.
  92. Saha AK, Avilucea PR, Ye JM, Assifi MM, Kraegen EW, Ruderman NB. Pioglitazone treatment activates AMPactivated protein kinase in rat liver and adipose tissue in vivo. Biochem Biophys Res Commun 2004;314:580-585. https://doi.org/10.1016/j.bbrc.2003.12.120
  93. MacLean PS, Zheng D, Dohm GL. Muscle glucose transporter (GLUT 4) gene expression during exercise. Exerc Sport Sci Rev 2000;28:148-152.
  94. Lowell BB, Shulman GI. Mitochondrial dysfunction and type 2 diabetes. Science 2005;307:384-387. https://doi.org/10.1126/science.1104343
  95. Lee JM, Seo WY, Song KH, Chanda D, Kim YD, Kim DK, Lee MW, Ryu D, Kim YH, Noh JR et al. AMPK-dependent repression of hepatic gluconeogenesis via disruption of CREB.CRTC2 complex by orphan nuclear receptor small heterodimer partner. J Biol Chem 2010;285: 32182-32191. https://doi.org/10.1074/jbc.M110.134890
  96. Yuan HD, Kim do Y, Quan HY, Kim SJ, Jung MS, Chung SH. Ginsenoside Rg2 induces orphan nuclear receptor SHP gene expression and inactivates GSK3$\beta$ via AMPactivated protein kinase to inhibit hepatic glucose production in HepG2 cells. Chem Biol Interact 2012;195:35-42. https://doi.org/10.1016/j.cbi.2011.10.006
  97. Li Y, Xu S, Mihaylova MM, Zheng B, Hou X, Jiang B, Park O, Luo Z, Lefai E, Shyy JY et al. AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice. Cell Metab 2011;13:376-388. https://doi.org/10.1016/j.cmet.2011.03.009
  98. Xiong Y, Shen L, Liu KJ, Tso P, Xiong Y, Wang G, Woods SC, Liu M. Antiobesity and antihyperglycemic effects of ginsenoside $Rb_1$ in rats. Diabetes 2010;59:2505-2512. https://doi.org/10.2337/db10-0315
  99. Liu L, Huang J, Hu X, Li K, Sun C. Simultaneous determination of ginsenoside (G-Re, G-$Rg_1$, G-$Rg_2$, G-F1, G-$Rh_1$) and protopanaxatriol in human plasma and urine by LC-MS/MS and its application in a pharmacokinetics study of G-Re in volunteers. J Chromatogr B Analyt Technol Biomed Life Sci 2011;879:2011-2017. https://doi.org/10.1016/j.jchromb.2011.05.018

피인용 문헌

  1. Red ginseng relieves the effects of alcohol consumption and hangover symptoms in healthy men: a randomized crossover study vol.5, pp.3, 2014, https://doi.org/10.1039/c3fo60481k
  2. Tang-Nai-Kang Alleviates Pre-diabetes and Metabolic Disorders and Induces a Gene Expression Switch toward Fatty Acid Oxidation in SHR.Cg-Leprcp/NDmcr Rats vol.10, pp.4, 2015, https://doi.org/10.1371/journal.pone.0122024
  3. Immunological Synergistic Effects of Combined Treatment with Herbal Preparation (HemoHIM) and Red Ginseng Extracts vol.44, pp.2, 2015, https://doi.org/10.3746/jkfn.2015.44.2.182
  4. Ginsenoside Rb1 stimulates adiponectin signaling in C2C12 muscle cells through up-regulation of AdipoR1 and AdipoR2 proteins vol.53, pp.1, 2015, https://doi.org/10.3109/13880209.2014.912237
  5. Protective and anti-angiopathy effects of ginsenoside Re against diabetes mellitus via the activation of p38 MAPK, ERK1/2 and JNK signaling vol.14, pp.5, 2016, https://doi.org/10.3892/mmr.2016.5821
  6. Overexpression of Panax ginseng sesquiterpene synthase gene confers tolerance against Pseudomonas syringae pv. tomato in Arabidopsis thaliana vol.22, pp.4, 2016, https://doi.org/10.1007/s12298-016-0384-9
  7. Therapeutic potential of compound K as an IKK inhibitor with implications for osteoarthritis prevention: an in silico and in vitro study vol.52, pp.9, 2016, https://doi.org/10.1007/s11626-016-0062-9
  8. Compound K derived from ginseng: neuroprotection and cognitive improvement vol.7, pp.11, 2016, https://doi.org/10.1039/C6FO01077F
  9. Anti-diabetic effects of natural products an overview of therapeutic strategies vol.13, pp.1, 2017, https://doi.org/10.1007/s13273-017-0001-1
  10. Preparation-related structural diversity and medical potential in the treatment of diabetes mellitus with ginseng pectins vol.1401, pp.1, 2017, https://doi.org/10.1111/nyas.13424
  11. Effects of various ginsenosides and ginseng root and ginseng berry on the activity of Pancreatic lipase vol.26, pp.3, 2017, https://doi.org/10.1007/s10068-017-0090-6
  12. Ginsenoside Rb1 exerts antidiabetic action on C2C12 muscle cells by leptin receptor signaling pathway vol.37, pp.4, 2017, https://doi.org/10.1080/10799893.2017.1286676
  13. TCM-Mesh: The database and analytical system for network pharmacology analysis for TCM preparations vol.7, pp.1, 2017, https://doi.org/10.1038/s41598-017-03039-7
  14. Protopanaxadiol and Protopanaxatriol-Type Saponins Ameliorate Glucose and Lipid Metabolism in Type 2 Diabetes Mellitus in High-Fat Diet/Streptozocin-Induced Mice vol.8, pp.1663-9812, 2017, https://doi.org/10.3389/fphar.2017.00506
  15. Protective effect of Korean red ginseng on oxaliplatin-mediated splenomegaly in colon cancer vol.95, pp.3, 2018, https://doi.org/10.4174/astr.2018.95.3.161
  16. Protective effect of ginsenoside Rg3 on lung injury in diabetic rats pp.07302312, 2018, https://doi.org/10.1002/jcb.27601
  17. -Mix on Lipopolysaccharide-Stimulated RAW 264.7 Murine Macrophage Cells vol.21, pp.10, 2018, https://doi.org/10.1089/jmf.2018.4180
  18. Effect of Red Ginseng Extract on the Pharmacokinetics and Efficacy of Metformin in Streptozotocin-Induced Diabetic Rats vol.10, pp.3, 2018, https://doi.org/10.3390/pharmaceutics10030080
  19. Compound K Inhibits Interleukin-1β-induced Expression of Inflammatory Mediators and Matrix Metalloproteinases by Inhibiting Mitogen-activated Protein Kinase Activation in Chondrocytes vol.25, pp.3, 2018, https://doi.org/10.4078/jrd.2018.25.3.188
  20. Kaempferol attenuates acute lung injury in caecal ligation and puncture model of sepsis in mice vol.44, pp.2, 2018, https://doi.org/10.1080/01902148.2017.1420271
  21. Ginseng for the treatment of diabetes and diabetes-related cardiovascular complications: a discussion of the evidence pp.1205-7541, 2019, https://doi.org/10.1139/cjpp-2018-0440
  22. Network Pharmacology Databases for Traditional Chinese Medicine: Review and Assessment vol.10, pp.1663-9812, 2019, https://doi.org/10.3389/fphar.2019.00123
  23. Panax ginseng for Frailty-Related Disorders: A Review vol.5, pp.2296-861X, 2019, https://doi.org/10.3389/fnut.2018.00140
  24. The bioavailability of red ginseng extract fermented by Phellinus linteus vol.37, pp.1, 2012, https://doi.org/10.5142/jgr.2013.37.108
  25. Protective effects of Korean red ginseng extract on cadmium-induced hepatic toxicity in rats vol.37, pp.1, 2012, https://doi.org/10.5142/jgr.2013.37.37
  26. Korean red ginseng inhibits arginase and contributes to endothelium-dependent vasorelaxation through endothelial nitric oxide synthase coupling vol.37, pp.1, 2012, https://doi.org/10.5142/jgr.2013.37.64
  27. Effect of Korean red ginseng extract on liver damage induced by shortterm and long-term ethanol treatment in rats vol.37, pp.2, 2013, https://doi.org/10.5142/jgr.2013.37.194
  28. HPLC-based metabolic profiling and quality control of leaves of different Panax species vol.37, pp.2, 2012, https://doi.org/10.5142/jgr.2013.37.248
  29. Ginseng saponins and the treatment of osteoporosis: mini literature review vol.37, pp.3, 2013, https://doi.org/10.5142/jgr.2013.37.261
  30. Ginsenoside Rc from Korean Red Ginseng (Panax ginseng C.A. Meyer) Attenuates Inflammatory Symptoms of Gastritis, Hepatitis and Arthritis vol.44, pp.3, 2012, https://doi.org/10.1142/s0192415x16500336
  31. The Efficacy of Ginseng-Related Therapies in Type 2 Diabetes Mellitus : An Updated Systematic Review and Meta-analysis vol.95, pp.6, 2012, https://doi.org/10.1097/md.0000000000002584
  32. Anti-Diabetic Effects ofGlycine sojaExtract in Genetic Animal Model ofdb/dbMouse vol.16, pp.2, 2012, https://doi.org/10.15429/jkomor.2016.16.2.101
  33. Effects of Ginsenoside Rg1 Regulating Wnt/ β -Catenin Signaling on Neural Stem Cells to Delay Brain Senescence vol.2019, pp.None, 2019, https://doi.org/10.1155/2019/5010184
  34. Enhanced Intestinal Permeability and Plasma Concentration of Metformin in Rats by the Repeated Administration of Red Ginseng Extract vol.11, pp.4, 2012, https://doi.org/10.3390/pharmaceutics11040189
  35. Interactions of ginseng with therapeutic drugs vol.42, pp.10, 2012, https://doi.org/10.1007/s12272-019-01184-3
  36. Sugar-Lowering Drugs for Type 2 Diabetes Mellitus and Metabolic Syndrome—Review of Classical and New Compounds: Part-I vol.12, pp.4, 2012, https://doi.org/10.3390/ph12040152
  37. Review of Ginseng Anti-Diabetic Studies vol.24, pp.24, 2012, https://doi.org/10.3390/molecules24244501
  38. Antihypertensive Effects of Rg3-Enriched Korean Vitamin Ginseng in Spontaneously Hypertensive Rats vol.15, pp.1, 2012, https://doi.org/10.1177/1934578x19900712
  39. Red Ginseng Inhibits Tau Aggregation and Promotes Tau Dissociation In Vitro vol.2020, pp.None, 2020, https://doi.org/10.1155/2020/7829842
  40. Natural Products and Their Bioactive Compounds: Neuroprotective Potentials against Neurodegenerative Diseases vol.2020, pp.None, 2020, https://doi.org/10.1155/2020/6565396
  41. Herb–Drug Interaction of Red Ginseng Extract and Ginsenoside Rc with Valsartan in Rats vol.25, pp.3, 2020, https://doi.org/10.3390/molecules25030622
  42. 고려인삼과 당뇨병: 세포와 동물 및 인체실험을 통한 고려인삼의 당뇨병에 대한 효능 vol.51, pp.1, 2012, https://doi.org/10.22889/kjp.2020.51.1.001
  43. Understanding Thai consumer attitudes and expectations of ginseng food products vol.35, pp.2, 2020, https://doi.org/10.1111/joss.12553
  44. Characteristics of Panax ginseng Cultivars in Korea and China vol.25, pp.11, 2012, https://doi.org/10.3390/molecules25112635
  45. Inhibitory effects of compounds from the roots of Potentilla longifolia on lipid accumulation vol.15, pp.9, 2012, https://doi.org/10.1371/journal.pone.0238917
  46. An LCI‐like protein APC2 protects ginseng root from Fusarium solani infection vol.130, pp.1, 2012, https://doi.org/10.1111/jam.14771
  47. Effects of immersion in fermented tea liquid and steam treatments on physicochemical properties and ginsenoside profiles of Korean ginseng vol.45, pp.1, 2012, https://doi.org/10.1111/jfpp.15050
  48. Anticancer Activities of Ginsenosides, the Main Active Components of Ginseng vol.2021, pp.None, 2021, https://doi.org/10.1155/2021/8858006
  49. Dose Correlation of Panax ginseng and Atractylodes macrocephala Koidz. Drug Pairs in the Chinese Medicine Prescription Based on the Copula Function vol.2021, pp.None, 2012, https://doi.org/10.1155/2021/9933254
  50. Effect of Panax notoginseng Saponins and Major Anti-Obesity Components on Weight Loss vol.11, pp.None, 2021, https://doi.org/10.3389/fphar.2020.601751
  51. Recent progress in polysaccharides from Panax ginseng C. A. Meyer vol.12, pp.2, 2012, https://doi.org/10.1039/d0fo01896a
  52. Phnomibacter ginsenosidimutans gen. nov., sp. nov., a novel glycoside hydrolase positive bacterial strain with ginsenoside hydrolysing activity vol.71, pp.5, 2021, https://doi.org/10.1099/ijsem.0.004793
  53. Effect of Lactic Acid Bacteria on the Pharmacokinetics and Metabolism of Ginsenosides in Mice vol.13, pp.9, 2012, https://doi.org/10.3390/pharmaceutics13091496
  54. The complete mitochondrial genome of Panax ginseng (Apiales, Araliaceae): an important medicinal plant vol.6, pp.10, 2021, https://doi.org/10.1080/23802359.2021.1981167
  55. Effects of different straw biochar combined with microbial inoculants on soil environment in pot experiment vol.11, pp.1, 2012, https://doi.org/10.1038/s41598-021-94209-1