DOI QR코드

DOI QR Code

Selection Criteria for Supercapacitors Based on Performance Evaluations

  • Kim, Sang-Hyun (Dept. of Electrical Engineering, Soongsil University) ;
  • Choi, Woo-Jin (Dept. of Electrical Engineering, Soongsil University)
  • Received : 2011.07.30
  • Accepted : 2011.12.09
  • Published : 2012.01.20

Abstract

In this paper, criteria for better selection of a supercapacitor through EIS (Electrochemical Impedance Spectroscopy) experiments are presented. The performance characteristics of a supercapacitor are thoroughly analyzed in terms of losses and available energy to select the optimal product. The validity of the proposed criteria is demonstrated through the computer simulations and experiments on a fuel cell vehicle using a supercapacitor module with the FTP-72 urban dynamometer driving schedule.

Keywords

References

  1. B. E. Conway, Electrochemical Supercapacitor: Scientific Principles and Technological Applications, Plenum, New York, NY, 1999.
  2. M. Ortuzar, J. Moreno, and J. Dixon, "Ultracapacitor-based auxiliary energy system for an electric vehicle: implementation and evaluation," IEEE Trans. Ind. Electron., Vol. 54, No. 4, pp.3225-3233, Aug. 2007. https://doi.org/10.1109/TIE.2007.896477
  3. J. Moreno, M. E. Ort´uzar, and J. W. Dixon "Energy-management system for a hybrid electric vehicle, using ultracapacitors and neural networks," IEEE Trans. Ind. Electron., Vol. 53, No. 2, pp.614-623, Apr. 2006. https://doi.org/10.1109/TIE.2006.870880
  4. A. Emadi, Y. J. Lee, and K. Rajashekara, "Power electronics and motor drives in electric hybrid electric and plug-in hybrid electric vehicles," IEEE Trans. Ind. Electron., Vol. 55, No. 6, pp.2237-2245, Jun. 2008. https://doi.org/10.1109/TIE.2008.922768
  5. S. M. Lukic, J. Cao, R. C. Bansal, F. Rodriguez, and A. Emadi, "Energy storage systems for automotive applications," IEEE Trans. Ind. Electron., Vol. 55, pp.2258-2267, Jun. 2008. https://doi.org/10.1109/TIE.2008.918390
  6. P. Thounthong, S. Rael, and B. Davat, "Control strategy of fuel cell and supercapacitors association for a distributed generation system," IEEE Trans. Ind. Electron., Vol. 54, pp. 255-3233, Dec. 2007.
  7. M. Uzunoglu and M. S. Alam, " Modeling and analysis of an FC/UC hybrid vehicular power system using a novel-wavelet-based load charing algorithm," IEEE Trans. Energy Convers., Vol. 23, No. 1, pp. 263-272, Mar. 2008. https://doi.org/10.1109/TEC.2007.908366
  8. L. Zubieta and R. Bonert, "Characterization of double-layer capacitors for power electronics applications," IEEE Trans. Ind. Electron., Vol. 36, pp. 199-205, Jan./Feb. 2000.
  9. H. Gualous, D. Bouquain, A. Berthon, and J. M. Kauffmann, "Experimental study of supercapacitor serial resistance and capacitance variations with temperature," J. Power Sources, Vol. 123, pp. 86-93, Sep. 2003. https://doi.org/10.1016/S0378-7753(03)00527-5
  10. S. Buller, E. Karden, D. Kok, and R. W. De Doncker, "Modeling the dynamic behavior of supercapacitors using impedance spectroscopy," IEEE Trans. Ind. Applicat., Vol. 38, pp. 1622-1626, Nov./Dec. 2002. https://doi.org/10.1109/TIA.2002.804762
  11. NF BP4610 Instruction Manual, NF Corporation.
  12. J. Lee and W. Choi, "Development of the low-cost impedance spectroscopy system for modeling the electrochemical power sources," The 7th ICPE,, pp. 113-118, Oct. 2007.
  13. NI 6124/6154 User Manual, National Instruments Corporation, 2008
  14. R. De Levie, Electrochemical Response of Porous and Rough Electrodes, Advances in Electrochemistry and Electrochemical Engineering, Vol. 6, Wiley Interscience, New York, 1967.
  15. O. Bohlen, J. Kowal, and D. U. Sauer, "Ageing behaviour of electrochemical double layer capacitors Part I. Experimental study and ageing model," J. Power Sources, Vol. 172, pp. 468-475, Oct. 2007. https://doi.org/10.1016/j.jpowsour.2007.07.021
  16. O. Bohlen, J. Kowal, and D. U. Sauer, "Ageing behaviour of electrochemical double layer capacitors Part II. Lifetime simulation model for dynamic applications," J. Power Sources, vol. 173, pp. 626-632, Nov. 2007. https://doi.org/10.1016/j.jpowsour.2007.07.059
  17. F .Rafik, H. Gualous, R. Gallay, A. Crausaz, and A. Berthon, "Frequency, thermal and voltage supercapacitor characterization and modeling," J. Power Sources, Vol. 165, pp. 928-934, Mar. 2007. https://doi.org/10.1016/j.jpowsour.2006.12.021
  18. H. E. Brouji, J.-M. Vinassa, O. Briat, N. Bertrand, and E. Woirgard, "Ultracapacitors self discharge modelling using a physical description of porous electrode impedance," IEEE Vehicles Power and Propulsion Conf., Sep. 2008.
  19. A. Salkind, T. Atwater, P. Singh, S. Nelatury, S. Damodar, C. Fennie Jr, and D. Reisner, "Dynamic characterization of small lead-acid cells," J. Power Sources, Vol. 96 , pp. 151-159, Jun. 2001. https://doi.org/10.1016/S0378-7753(01)00561-4
  20. Y. Cheng, J. V. Mierlo, P. Lataire, and G. Maggetto, "Test bench of hybrid electric vehicle with the super capacitor based energy storage," IEEE-ISIE'07, Jun. 2007.

Cited by

  1. High-Efficiency Supercapacitor Charger Using an Improved Two-Switch Forward Converter vol.14, pp.1, 2014, https://doi.org/10.6113/JPE.2014.14.1.1