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ON SOME COMBINATIONS OF SELF-RECIPROCAL

POLYNOMIALS

Seon-Hong Kim

Abstract. Let Pn be the set of all monic integral self-reciprocal poly-
nomials of degree n whose all zeros lie on the unit circle. In this paper
we study the following question: For P (z), Q(z) ∈ Pn, does there exist

a continuous mapping r → Gr(z) ∈ Pn on [0, 1] such that G0(z) = P (z)
and G1(z) = Q(z)?

1. Introduction

Throughout this paper, U denotes the unit circle and n is a positive integer.
If all zeros of P (z) ∈ R[z] of degree n lie on U , it is well known that P (z) =
±znP (1/z), and P (z) is called self-reciprocal when P (z) = znP (1/z). In what
follows we denote by Pn the set of all monic integral self-reciprocal polynomials
of degree n whose all zeros lie on U . Our basic goal in this paper is the study
of the following question.

Question A. For given polynomials P (z), Q(z) ∈ Pn, does there exist a
continuous mapping r → Gr(z) ∈ Pn on [0, 1] such that

G0(z) = P (z), G1(z) = Q(z)?

The condition P (z) and Q(z) self-reciprocal in Question A seems to be neces-
sary because z+1 and z− 1 are the only monic integral polynomials of degree
1 with all zeros on U and so no Gr(z) in Question A exists. One may ask
naturally whether Gr(z) in Question A is the convex combination of P (z) and
Q(z), that is Gr(z) = (1− r)P (z) + rQ(z) where 0 ≤ r ≤ 1. However Gr(z) is
not always the convex combination, for example the polynomials

P (z) = (z2 − z + 1)(z4 + 1)(z6 + z5 + z4 + z3 + z2 + z + 1),

Q(z) = (z4 − z3 + z2 − z + 1)(z8 − z6 + z4 − z2 + 1)
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have all their zeros on U , but (P (z) + Q(z))/2 has four zeros of modulus
1.15963 · · · . This yields a question about the existence of Gr(z) which is not
the convex combination. If Question A is true, we will write

P ∼ Q,

and specially if Gr(z) is the convex combination, we will write

P ↪→ Q.

Preliminary attempts using computer algebra lead to the various unproved
examples including

z2n+1 − 1

z − 1
↪→

(
zn+1 − 1

z − 1

)2

and (
zn − 1

z − 1

)3

↪→ z3(n−1) + z3(n−1)−1 + · · ·+ 1.

And Kim [2] showed

(z2n + 1)2 ∼ (z2 − 1)(z4n−2 − 1)

for some Gr(z) that is not the convex combination. But it seems to be hard to
find such Gr(z).

In Section 2, we will give examples of self-reciprocal polynomials P (z) and
Q(z) satisfying P ∼ Q in different two ways and one of them is P ↪→ Q.
This generalizes Theorem 1 of [2]. In Section 3, we will consider self-reciprocal
polynomials that are products of finite geometric series. Let

Fa1,...,au(z) =

u∏
j=1

zaj − 1

z − 1
,

Fu,n =

Fa1,...,au(z) : all aj ∈ N− {1} (1 ≤ j ≤ u) are distinct,
u∑

j=1

aj = n

 .

We will prove a conjecture given in [2] that f1 ↪→ f2 for any f1, f2 ∈ F2,n.
In case of u ≥ 3, not all g1, g2 ∈ Fu,n satisfy g1 ↪→ g2. But we will see that,
using the case u = 2, for any g1, g3 ∈ F3,n, there exists g2 ∈ F3,n such that
g1 ↪→ g2 ↪→ g3, and such g2 is not unique. Also we will study how to show
g1 ↪→ g2 where g1, g2 ∈ F3,n are specifically given. The main tool for this
is Fell’s lemma [1]. Finally in Section 4, we will discuss whether “∼” is an
equivalence relation or not over the set Fu,n. It is obvious that “∼” is reflexive
and symmetric. But we don’t give an answer for transitivity but at least we
will see that a natural candidate for this does not work.
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2. P ∼ Q in two ways

In this section, we show that some P (z) and Q(z) satisfy both P ↪→ Q and
P ∼ Q as not a convex combination. This generalizes Theorem 1 of [2]. Using
Cohn’s theorem (see p. 230 of [3]) we prove:

Theorem 1. Let a, b, c ∈ N with c > a > b and 2a = b+ c. Then we have
(a) (za ± 1)2 ↪→ (zb − 1)(zc − 1),
(b) (za ± 1)2 ∼ (zb − 1)(zc − 1),

where

(1) Gr(z) = z2a − razc − (±rc ± rb ∓ 2)za − razb + 1, 0 ≤ r ≤ 1.

Proof. Suppose that a, b, c ∈ N with c > a > b, 2a = b+ c, and 0 < r < 1. We
first prove (a). Write G0(z) = (za ± 1)2, G1(z) = (zb − 1)(zc − 1) and

Gr(z) = (1− r)G0(z) + rG1(z)

= z2a − rzc + 2(±1∓ r)za − rzb + 1.

Then we can compute

Hr(z) :=
G′

r(z)

zb−1
= 2az2a−b − crzc−b + 2a(±1∓ r)za−b − br.

Define, for ϵ > 0,

Hr,ϵ(z) := (2a+ ϵ)z2a−b − crzc−b + 2a(±1∓ r)za−b − br.

For |z| = 1,

|Hr,ϵ(z)| ≥ 2a+ ϵ− (cr + 2a(1− r) + br) = ϵ > 0

which implies Hr,ϵ(z) does not have a zero on U . By Roché, Hr,ϵ(z) has all
2a− b zeros strictly inside U . Letting ϵ → 0, we see that G′

r(z) has all its zeros
inside or on U . It follows from Cohn’s theorem that the proof of (a) is complete.
The proof of (b) is very similar to the above. We again let G0(z) = (za ± 1)2

and G1(z) = (zb − 1)(zc − 1). From (1) we may calculate

G′
r(z)

zb−1
= 2az2a−b − crazc−b − a(±rc ± rb ∓ 2)za−b − bra.

Let

f(z) = 2az2a−b,

g(z) = −crazc−b − a(±rc ± rb ∓ 2)za−b − bra.

On |z| = 1,

|g(z)| ≤ cra + a(2− rc − rb) + bra

= 2ara + 2a− a(rc + rb)

= a(2ra + 2− rc − rb)

< 2a = |f(z)|.
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Last inequality follows from the arithmetic-geometric mean inequality, that is

rc + rb

2
>

√
rc+b = ra.

Hence, by Rouché, G′
r(z) has all its zeros inside U . It follows from Cohn’s

theorem that the proof is complete. □

3. Products of finite geometric series

In Section 3, we consider self-reciprocal polynomials that are products of
finite geometric series. With recall

Fa1,...,au(z) =
u∏

j=1

zaj − 1

z − 1

Fu,n =

Fa1,...,au(z) : all aj ∈ N− {1} (1 ≤ j ≤ u) are distinct,

u∑
j=1

aj = n

 ,

we prove a conjecture given in [2] which aserts f1 ↪→ f2 for any f1, f2 ∈ F2,n.
The proof of this is similar to that of Theorem 1. Multiplying (z − 1)2 of each
side, we only need to show:

Theorem 2. Let a, b, c, d ∈ N with not all equal and a + b = c + d. Then we
have

(za − 1)(zb − 1) ↪→ (zc − 1)(zd − 1).

Proof. We may assume that c > a > b > d. Write

G0(z) = (za − 1)(zb − 1) = za+b − za − zb + 1,

G1(z) = (zc − 1)(zd − 1) = zc+d − zc − zd + 1,

and for 0 < r < 1,

Gr(z) = (1− r)G0(z) + rG1(z)

= zc+d − rzc − (1− r)za − (1− r)zb − rzd + 1.

Then we can compute

Hr(z) :=
G′

r(z)

zd−1
= (c+ d)zc − crzc−d − a(1− r)za−d − b(1− r)zb−d − dr.

Define, for ϵ > 0,

Hr,ϵ(z) := (c+ d+ ϵ)zc − crzc−d − a(1− r)za−d − b(1− r)zb−d − dr.

For |z| = 1,

|Hr,ϵ(z)| ≥ c+ d+ ϵ− (cr + a(1− r) + b(1− r) + dr) = ϵ > 0

which implies Hr,ϵ(z) does not have a zero on U . By Roché, Hr,ϵ(z) has all c
zeros strictly inside U . Letting ϵ → 0, we see that G′

r(z) has all its zeros inside
or on U . It follows from Cohn’s theorem that the proof is complete. □
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Unlikely for u = 2, not all g1, g2 ∈ Fu,n, u ≥ 3 satisfy g1 ↪→ g2. For example,

F3,7,10 ̸↪→ F4,5,11

because F3,7,10 +F4,5,11 has four zeros not on U . But using the case u = 2, we
show:

Proposition 3. For any g1, g3 ∈ F3,n, there exists g2 ∈ F3,n such that g1 ↪→
g2 ↪→ g3.

Proof. Let Fa1,a2,a3
, Fc1,c2,c3 ∈ F3,n with

min{a1, a2, a3} = a1 and min{c1, c2, c3} = c1.

If ai = cj for some i and j, we take b1 = ai = cj so that, by Theorem 2,
Fa1,a2,a3 ↪→ Fb1,b2,b3 and Fc1,c2,c3 ↪→ Fb1,b2,b3 for some b2 and b3. Assume that
none of ai, cj are same. Since 2 ≤ a1, c1 ≤

[
n
3

]
− 1, we have

2 ≤ a1 + c1 ≤ 2n

3
− 2 < n.

Choose b1 = a1 and b2 = c1 so that b1 + b2 < n. By Theorem 2 again,
Fa1,a2,a3 ↪→ Fb1,b2,b3 and Fc1,c2,c3 ↪→ Fb1,b2,b3 for some b2 and b3. □

The g2 of above theorem is not unique. For example, we may check that

F3,7,10 ↪→ F5,6,9 ↪→ F4,5,11,

F3,7,10 ↪→ F2,7,11 ↪→ F4,5,11,

F3,7,10 ↪→ F2,8,10 ↪→ F4,5,11.

Next we will provide an example about the way to show g1 ↪→ g2 where g1, g2 ∈
F3,n are specifically given. The main tool for this is Fell’s lemma [1] below.

Lemma 4 (Fell). Let P0(z) and P1(z) be real monic polynomials of degree n
with their zeros contained in the unit circle except for −1 and 1. Denote the
zeros of P0(z) by w1, w2, . . . , wn and of P1(z) by z1, z2, . . . , zn. Assume that

wi ̸= zj (1 ≤ i, j ≤ n)

and

0 < arg (wi) ≤ arg (wj) < 2π,

0 < arg (zi) ≤ arg (zj) < 2π (1 ≤ i < j ≤ n).

Let αi be the smaller open arc of the unit circle bounded by wi and zi (i =
1, . . . , n). Then the locus of zeros of (1 − A)P0(z) + AP1(z) (0 ≤ A ≤ 1) is
contained in the unit circle if and only if the arcs αi are disjoint.

For Fa1,a2,a3 , Fb1,b2,b3 ∈ F3,n, write

cj = max
1≤i≤3

gcd(ai, bj), 1 ≤ j ≤ 3,(2)
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and if cjk = cjl we convention that one of these equals 1. Then Fa1,a2,a3 and
Fb1,b2,b3 have common factor

3∏
j=1

(zcj−1 + zcj−2 + · · ·+ 1),

and hence to show Fa1,a2,a3 ↪→ Fb1,b2,b3 , we apply above lemma to the integral
polynomial

(3) Pr(z) :=
(1− r)Fa1,a2,a3 + rFb1,b2,b3∏3
j=1(z

cj−1 + zcj−2 + · · ·+ 1)
.

The arguments of the zeros of zα−1
z−1 between 0 and 2π are 2kπ/α, 1 ≤ k ≤ α−1.

So, by removing the constant 2π, the zeros of zα−1
z−1 can be identified with the

ascending chain of rational numbers 1/α, 2/α, . . . , (α − 1)/α. In this vein, for
convenience, we denote

[α] =

{
1

α
,
2

α
, . . . ,

α− 1

α

}
.

When applying Fell’s lemma, we will use an ascending chain of rational numbers
as above instead of angle arguments. To connect this ascending chain with the
zeros on U in Fell’s lemma, we need the definition below.

Definition 5. If U is a finite multiset of complex numbers, write

PU (x) =
∏
α∈U

(x− α).

If U and V are sets of real numbers, with no repeated elements, and moreover

|U | = |V | = n, U ∩ V = ϕ,

we may write

T := U ∪ V = {t1, t2, . . . , t2n}
with ti < ti+1 for all i. Define

T1 = {{t1, t2}, {t3, t4}, . . . , {t2n−1, t2n}}.
We say that a U -bad pair for T or for (PU , PV ) is a pair of T1 such that both
elements belong to U ; let NU (U, V ) denote the number of U -bad pairs. The
number of bad pairs is defined by

NU (U, V ) +NV (U, V ).

Also a pair that is not bad is called a good pair.

How many zeros does Pr(z) in (3) have on U? It is an easy consequence
of Fell [1] that, if all elements of [a1] ∪ [a2] ∪ [a3] and [b1] ∪ [b2] ∪ [b3] with all
commons deleted form good pairs, Pr(z) has all its zeros on U . For example,
we can prove

F3,7,10 ↪→ F5,6,9.
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We first observe that c1 = 5, c2 = 3 and c3 = 1 from (2), which implies that
F3,7,10 and F5,6,9 have common factor

(z2 + z + 1)(z4 + z3 + z2 + z + 1).

So we now remove
1

3
,
2

3
,
1

5
,
2

5
,
3

5
,
4

5

once from both sets in ascending order

[3] ∪ [7] ∪ [10] =

{
1

10
,
1

7
,
2

10
,
2

7
,
3

10
,
1

3
,
4

10
,
3

7
,
5

10
,
4

7
,
6

10
,
2

3
,
7

10
,
5

7
,
8

10
,
6

7
,
9

10

}
and

[5] ∪ [6] ∪ [9] =

{
1

9
,
1

6
,
1

5
,
2

9
,
3

9
,
2

6
,
2

5
,
4

9
,
3

6
,
5

9
,
3

5
,
6

9
,
4

6
,
7

9
,
4

5
,
5

6
,
8

9

}
,

respectively, so that we have the remained elements

([3] ∪ [7] ∪ [10])′ :=

{
1

10
,
1

7
,
2

7
,
3

10
,
3

7
,
5

10
,
4

7
,
7

10
,
5

7
,
6

7
,
9

10

}
,

([5] ∪ [6] ∪ [9])′ :=

{
1

9
,
1

6
,
2

9
,
2

6
,
4

9
,
3

6
,
5

9
,
4

6
,
7

9
,
5

6
,
8

9

}
.

These also have common element 1/2 and there is a common factor z+1. After
deleting 1/2 from the both sets above, we form the pairs from one element of
each set as following:(

1

10
,
1

9

)
,

(
1

7
,
1

6

)
,

(
2

9
,
2

7

)
,

(
3

10
,
2

6

)
,

(
3

7
,
4

9

)
,(

5

9
,
4

7

)
,

(
4

6
,
7

10

)
,

(
5

7
,
7

9

)
,

(
5

6
,
6

7

)
,

(
8

9
,
9

10

)
.

The pairs above are all good, and hence by Fell’s lemma the polynomial

(1− r)F3,7,10 + rF5,6,9

=(z + 1)(z2 + z + 1)(z4 + z3 + z2 + z + 1)

(z10 + z8 + rz7 + z6 + z5 + z4 + rz3 + z2 + 1).

has all its zeros on U . As a by-product of this proof, the fact that the zeros of
the polynomial

z10 + z8 + rz7 + z6 + z5 + z4 + rz3 + z2 + 1, 0 ≤ r ≤ 1,

lie on U is obtained.



182 SEON-HONG KIM

4. Remarks

The relation ∼ is obviously reflexive and symmetry on the set Fu,n. So
it is natural to ask whether ∼ is transitive or not. If it is transitive, it
is an equivalence relation and we may research further with this. Suppose
Fa1,a2,a3 ↪→ Fb1,b2,b3 and Fb1,b2,b3 ↪→ Fc1,c2,c3 on F3,n. One might choose a
polynomial Gr(z) to hold Fa1,a2,a3 ∼ Fc1,c2,c3 as

(4) Gr(z) = (1− r)2Fa1,a2,a3 + r(1− r)Fb1,b2,b3 + rFc1,c2,c3

from the case r = s of

(1− s) [(1− r)Fa1,a2,a3 + rFb1,b2,b3 ] + sFc1,c2,c3 .

Many experimentations with computer algebra yield that Gr(z) in (4) seems
to have all its zeros on U and so Fa1,a2,a3 ∼ Fc1,c2,c3 . But the ideas of Fell
allow us to make a counterexample. It follows from Fa1,a2,a3 ↪→ Fb1,b2,b3 and
Fell’s lemma that all zeros of the self-reciprocal polynomial

(5) Ar(z) := (1− r)Fa1,a2,a3 + rFb1,b2,b3 (0 ≤ r ≤ 1)

are on U and each zero is located on an open arc of U , where all such arcs
are disjoint. We use notation [ ] as before, and assume that all sets [ ] below
are in ascending order. Suppose that there are no elements of ∪3

i=1[ci] be-
tween four consecutive elements of ∪3

i=1 ([ai] ∪ [bi]) that form two good pairs

for
(∪3

i=1[ai],
∪3

i=1[bi]
)
, and two pairs for

(∪3
i=1 ([ai] ∪ [bi]) ,

∪3
i=1[ci]

)
just

before and after such four consecutive elements of ∪3
i=1 ([ai] ∪ [bi]) are good.

Then this yields at least one bad pair from the zeros of (4) and so not all zeros
of (4) locate on U . For example, we let

(a1, a2, a3) = (5, 19, 21), (b1, b2, b3) = (8, 17, 20), (c1, c2, c3) = (11, 16, 18).

Then we have
3∪

i=1

([ai] ∪ [bi]) =

{
. . . ,

2

5
,

7

17
,

8

19
,

9

21
, . . .

}
in ascending order on the set (0, 1), where the element 2/5 actually occurs
twice so that it is a zero of (5). Hence for our purpose we may convention that

(2/5, 2/5) is a good pair for
(∪3

i=1[ai],
∪3

i=1[bi]
)
. We now can compute that(

7

17
,

8

19

)
is a good pair, and all elements < 2/5 and ≥ 9/21 also form good pairs from
the zeros of (5). Thus by Fell’s lemma, each good pair above contains exactly
one zero of (5). But

3∪
i=1

[ci] =

{
. . . ,

7

18
,

7

16
, . . .

}
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in ascending order, and we see that

7

18
<

2

5
,

8

19
<

7

16
.

This yields one bad pair from the zeros of (4). Thus

Fa1,a2,a3 ̸∼ Fc1,c2,c3 .
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